

Driving Management System (DMS)

Group 26

Department of Electrical Engineering & Computer
Science

University of Central Florida

Dr. Samuel Richie

Senior Design II–Spring 2014

April 28, 2014

Aaron Kost
Victor Medina

Sarah Bokunic

i

Table of Contents
1.0 Executive Summary ... 1

2.0 Project Description ... 2

2.1 Project Motivation ... 3

2.2 Objectives ... 3

2.2.1 Vehicle Interface Objectives ... 4

2.2.2 Blind spot sensing and Collision Detection Circuits 4

2.2.3 Fuel Efficiency Monitoring .. 4

2.2.4 Reverse Assistance .. 5

2.3 Project Requirements and Specifications.. 5

2.3.1 Hardware Requirements and Specifications ... 6

3.0 Research ... 7

3.1 Existing Products/Projects .. 7

3.1.1 Blind Spot Product .. 8

3.1.2 Fuel Efficiency Monitoring Products ... 8

3.1.3 Rearview Camera Products .. 8

3.1.4 Existing OpenXC Projects .. 9

3.2 Fuel Efficiency ... 9

3.2.1 Driving Habits ... 9

3.2.2 2013 Ford Focus Information ... 10

3.2.2.1 Current Ford Focus Driving Aids ...11

3.2.3 Outside Factors .. 11

3.3 Microcontrollers ... 12

3.3.1 Overview .. 12

3.3.2 MSP430G2553 ... 13

3.3.3 ATmega328P ... 14

3.3.4 CC2541 .. 15

3.3.5 Summary .. 16

3.3.6 UART Communications .. 16

3.3.7 Programming Languages ... 16

3.4 Application Development .. 17

3.4.1 Android Development Environment .. 17

3.4.2 OpenXC Application Programming Interface (API) 18

3.4.3 Android Connectivity and Data Storage .. 19

ii

3.4.3.1 Android Classic Bluetooth ...19

3.4.3.2 Android Low Energy Bluetooth ..20

3.4.3.3 USB Host and Accessory ..20

3.4.3.4 Android Data Storage ..21

3.4.4 Android Application User Interface ... 23

3.4.4.1 Android UI Layouts ..24

3.4.4.2 UI Input controls ..26

3.4.4.3 UI Event Handling ...28

3.4.4.4 UI Settings ..29

3.4.4.5 UI Toasts ..30

3.4.4.6 Styles and Themes ...32

3.4.5 Graphing Tools ... 33

3.4.6 Colorblind Assistance ... 33

3.5 Sensors ... 34

3.5.1 Ultrasonic Sensors ... 34

3.5.2 Passive Infrared Sensors ... 35

3.5.3 Microwave Sensors .. 35

3.5.4 Light Sensor ... 36

3.5.5 Alternative Options ... 36

3.6 Wireless Communication .. 36

3.6.1 Bluetooth .. 36

3.6.1.1 Bluetooth Architecture ...37

3.6.1.2 Bluetooth Low Energy ...37

3.6.2 Zigbee .. 38

3.7 Power .. 38

3.7.1 Batteries ... 38

3.7.2 Voltage Regulator ... 39

3.7.2.1 Linear voltage regulator...39

3.7.2.2 Switching voltage regulator ...40

3.8 Rearview Camera ... 40

3.8.1 Camera ... 40

4.0 Hardware and Software Design Details .. 41

4.1 Software Design .. 41

4.1.1 Android Application... 41

iii

4.1.2 Real Time Fuel Efficiency Analysis... 45

4.1.3 Long Term Analysis and Messages.. 49

4.1.4 User Interface ... 50

4.1.4.1 Aesthetics ...50

4.1.4.2 Layout and Accessibility ..50

4.1.4.3 Graphing ...52

4.1.4.4 Color Themes ...53

4.1.5 Safety Features .. 54

4.1.6 Audio Notifications .. 55

4.1.7 DMS Toast Generation ... 56

4.2 Hardware Design .. 59

4.2.1 Vehicle Interface ... 59

4.2.1.1 Overview ...59

4.2.1.2 OBD-II Port Specifications ...60

4.2.2 Power ... 61

4.2.3 Microcontroller .. 62

4.2.4 Bluetooth Communication .. 63

4.2.5 Blind Spot Detection ... 65

4.2.5.1 Overview ...65

4.2.5.2 Sensor ..66

4.2.5.3 Amplification Circuit ...67

4.2.5.4 Overall Blind Spot Circuit ..68

4.2.6 Collision Detection .. 69

4.2.3.1 Overview ...69

4.2.3.2 Sensor ..69

4.2.3.3 Overall Circuit ...70

4.2.7 Rear View Camera ... 71

4.2.4.1 Overview ...71

4.2.8 Casing .. 72

5.0 Design Summary of Hardware and Software ... 73

5.1 Fuel Efficiency Summary .. 73

5.2 Blind Spot Detection Summary ... 74

5.3 Collision Detection Summary .. 74

6.0 Project Prototype Testing .. 76

iv

6.1 Software Testing ... 76

6.1.1 Blind Spot Detection ... 76

6.1.2 Collision Detection .. 77

6.1.3 Rear View Camera Error! Bookmark not defined.

6.1.4 Visual Display for Fuel Efficiency ... 78

6.1.5 User Interface ... 80

6.1.5.1 Driving History ...81

6.1.5.2 Options ...81

6.1.5.2.1 Change Colors ..82

6.2 Safety .. 82

6.3 Simulations ... 83

6.4 Road Testing ... 85

6.4.1 Fuel Efficiency road testing .. 86

6.4.2 Blind Spot Detection road testing ... 87

6.4.3 Collision Detection road testing .. 87

6.4.4 Rear-view camera road testing Error! Bookmark not defined.

7.0 Administrative Content .. 87

7.1 Budget and Finance .. 87

7.2 Milestone Chart and Discussion .. 88

7.3 Work Distribution ... 89

Appendices ... 92

Appendix A - Permissions ... 92

Appendix B - References .. 92

Appendix C - Table of Tables .. 93

Appendix D - Table of Figures .. 94

1

1.0Executive Summary

The goal of this project is to provide driver’s with access to features that are not
available on most base model vehicles. The Driving Management System (DMS)
provides drivers with fuel efficiency analysis, a blind spot detection system, a
front end collision sensor and a rearview camera. All of these features are meant
to enhance the safety of the driver. All of the features that the DMS provides can
be added to any vehicle for a large price. The DMS looks to provide driver’s with
a cheap and efficient alternative to expensive aftermarket products. Most
importantly each feature of the DMS will be tied into an easy to use application
on the driver’s android phone. Smartphone applications are currently very
popular. Many car manufacturers are implementing smart phone applications
within their vehicles. The DMS looks to combine electronic hardware that may be
offered as additional features on newer vehicles and combine them with the
user’s android device. This allows the user to have full control of certain features
in their vehicle just by using their smartphone or tablet. The DMS is based off the
OpenXC API designed by Ford. This allows the project to obtain information that
is not necessarily available to the driver. The goal of Ford’s OpenXC is to allow
drivers and developers to make their own aftermarket features for Ford vehicles.
The DMS will use this to implement aftermarket features for vehicles and
combine it with an Android application.

The driver will be provided messages through their phone on how they can
improve their fuel efficiency based on driving behavior. This will save the driver
money by getting rid of bad habits that may be causing their vehicles fuel
efficiency to drop. This also helps to protect the driver from accidents as many
dangerous driving behaviors also decrease fuel efficiency. Insurance companies
such as Progressive have been using technology similar to this to provide drivers
with discounts and feedback on their driving behavior. Insurance companies can
potentially use the DMS as another method to monitor driver’s behaviors and to
offer discounts to safe drivers. This could decrease the amount of accidents seen
on the road by promoting safer driving habits. The DMS also provides additional
safety features that communicate with the driver’s android device. The blind spot
detection system alerts drivers when there is another vehicle in their blind spot.
This allows the driver to take appropriate action if they are changing lanes and
may reduce the chance of an accident. Rear ending vehicles or other objects can
lead to expensive repair costs. For this reason the front end collision system was
implemented to help avoid these accidents. The DMS is also very simple to use
as there is no need for a complicated installation. Each component of the DMS
can be placed on the vehicle. This allows for anyone to be able to fit the DMS to
their vehicle themselves. The ability of the driver to know whether or not a car is
located in their blind spot or to have vision of what is directly behind their car
when backing up greatly reduces the chances of an accident. This project is
designed for the 2013 Ford Focus. The Vehicle Interface used is programmed to
use information that is specific to the Ford Focus. This project can be used as a

2

means on how to improve driver's fuel efficiency and safety. It can also be seen
as a starting point on how to implement a similar device on other vehicle models.

2.0 Project Description

DMS will assist drivers in driving more effectively and safely by providing
expensive vehicle features for a fraction of the cost. DMS will use the driver's
smartphone to provide fuel efficiency management, blind spot detection, rear
view camera vision, and frontal collision detection. Each feature will consist of a
self-powered stand-alone hardware module that communicates with the phone
wirelessly. Using the OpenXC vehicle interface that plugs into the vehicles OBDII
port, the phone will receive data from the vehicle. The received data will include
the needed vehicle information to determine fuel efficiency, lane changing, and
reversing. Using vehicle information from the car and signals received from the
hardware peripherals DMS will assist the driver with switching lanes, driving with
better fuel efficiency, and reversing safely. By having all the hardware peripherals
be self-contained and powered, with wireless communications, no modifications
to the vehicle will be necessary, allowing drivers with no technical knowledge to
obtain expensive and advanced features post-manufacture that will improve
driving habits and assist in reducing accidents.The vehicle interface is a
hardware device that plugs into the vehicles diagnostic port and passively listens
for a subset of CAN messages, performs required unit conversion, and makes
the converted data accessible using the OpenXC android library. The host
device, or smartphone, connects to the vehicle interface and uses the OpenXC
android library to access the required data.

The smartphone acts as the host device, making it the driving force behind DMS.
The smartphone is responsible for storing data, relaying information to the driver,
and determining how DMS should respond to varying situations. The smartphone
will be wirelessly receiving vehicle information from the vehicle interface via the
OpenXC library, as well as receiving indication signals and data from the various
hardware modules installed on the vehicle. The host device for DMS must be an
android phone running android 3.0 or greater. The blind spot detection feature for
DMS will consist of two standalone hardware modules that are battery powered
and communicate with the host device wirelessly. The hardware will include a
low power-consumption microcontroller that is Bluetooth enabled, and a low
range sensor to detect objects that the vehicle may collide with when switching
lanes.

The reverse assist will activate when the vehicles gear position is set to reverse.
A webcam placed on the rear of the vehicle will stream video to the host device
as well as provide an onscreen collision detection overlay to help driver with
positioning of the vehicle.

3

The fuel efficiency portion of the app will be active when the car is in drive. The
smartphone will receive information pertaining to fuel consumption and driving
habits that affect fuel consumption while the vehicle is in motion. The fuel
efficiency monitor will provide the driver with real-time feedback on their fuel
consumption, and when the vehicle is stopped at a light, it will provide them with
suggestions based on their driving to improve their future fuel consumption. The
frontal collision detection will consist of a low power-consumption microcontroller
with a narrow wave sensor. The frontal collision detector will be responsible for
helping the driver park, and ensure the front of their vehicle does not collide with
parking blocks and other objects out of the driver’s vision.

2.1 Project Motivation

The motivation for this project stems for the need to have better gas mileage and
safer driving on the roads. People who have purchased new standard package
vehicles such as the 2013 Ford Focus pay anywhere from $15,000 to $21,000
dollars and most do not come with advanced features such as a backup camera,
blind spot detection, or advanced fuel efficiency assistance. The 2013 Ford focus
currently has a very primitive feedback system for fuel efficiency. If the vehicle is
able to communicate with a drivers smartphone, a more accurate fuel efficiency
monitor should be available that gives the driver detailed reports, suggestions,
and real-time feedback in an easy to interpret manner.

The package on the 2013 Ford Focus that this project will be using does not
come with blind spot detection because it was too expensive. If a hardware
module that communicates to the smartphone wirelessly can be developed for a
low cost, then the expensive feature of blind spot detection can be added using
the smartphone for a much smaller price presenting money tight customers with
access to luxury safety features.

There are a lot of products that offer these features independent of each other,
but if the smartphone is used as a central host device, a number of hardware
peripherals can be added allowing people to add many more post-manufacture
features without the clutter of a bunch of standalone hardware devices.

2.2 Objectives

The projects main objectives can be categorized as follows:

 1) Vehicle Interface
 2) Blind spot sensing and Collision detecting circuits
 3) Fuel efficiency monitoring
 4) Reverse Assistance

4

2.2.1 Vehicle Interface Objectives

The vehicle interface is the keystone of the project, that is, for this project to work
the vehicle interface must be 100% functional. For this reason the project will first
use a prebuilt vehicle interface from Ford, and if time permits we hope to develop
our own vehicle interface. Therefore the following objectives for the vehicle
interface include:

1. Loading correct firmware for 2013 Ford Focus
2. Setting up Eclipse with OpenXC libraries
3. Setting up android enabler and running initial diagnostic test
4. Setting up vehicle emulator for testing
5. Determining if there is time to design our own project specific

vehicle interface.
a. Selecting a compatible microprocessor.
b. Selecting appropriate diagnostic pins required for project.
c. Selecting and integrating compatible Bluetooth.
d. Ensuring microprocessor always receives correct voltage

from diagnostic port.
e. Passing 12v power from vehicle to separate power jack.

2.2.2 Blind spot sensing and Collision Detection Circuits

The Blind Spot sensing and collision detecting circuits are important because
they represents a major portion of the features this project will offer. It is
important that the circuits communicate wirelessly and are battery powered so
that it meets the project criteria of being effortless to install. Therefore the
following objectives for the Blind Spot sensing circuit and Collision detecting
circuit include:

1. Selecting a microprocessor that has a low power mode, can be
battery powered, and can handle the computations required for the
blind spot detection or collision detection.

2. Selecting a sensor type and a sensor range.
3. Selecting the type of wireless connection and the wireless

connection hardware
4. Selecting the battery that will power the circuit.
5. Ensuring that the battery can be recharged using the vehicles

power outlets if the battery needs to be recharged.
6. Creating an effective way to easily mount on vehicle

2.2.3 Fuel Efficiency Monitoring

The fuel efficiency monitoring portion of this app utilizes the vehicle interface
more than any other feature. The fuel efficiency monitoring portion of the app has

5

to be safe for drivers to view, user friendly so they don’t have to touch it while
driving, and provide accurate information and suggestions. The objectives for
the fuel efficiency monitoring include:

1. Using vehicle data to accurately determine the driver’s fuel
efficiency.

2. Creating an accessible database to store driving data that pertains
to fuel efficiency.

3. Using stored and current driving data to make suggestions on
improving fuel efficiency.

4. Providing graphical breakdown of driving information to display bad
driving habits in an easy to interpret manner.

2.2.4 Reverse Assistance

Reverse assistance feature includes a rear-facing camera with a graphical
overlay to show the driver where it is safe to reverse. The reverse assistance
feature will use the vehicle interface to tell when the care in in the reverse gear,
and activate the camera feed. The objectives for the reverse assistance include:

1. Connecting the camera to the android host device, so that the host
device receives live camera feed from behind the vehicle. This
includes creating a java library that can handle connecting camera
and receiving video frames.

2. Creating a graphical overlay that responds to vehicle wheel
position.

3. Mounting the camera on the rear of the vehicle with necessary
wiring.

2.3 Project Requirements and Specifications

The most important requirement of the DMS is that it does not interfere with the
driver. The alerts sent to the driver must be by voice so that the driver can
maintain vision on the road. Since a phone or tablet is being used to relay
information back to the driver, it must be positioned to prevent it from interfering
with the driver’s attention on the road. Ideally the project would be integrated into
the dashboard of the vehicle, but there is currently no access to altering the
information displayed on the dashboard. The DMS must also be small and easy
to use. Due to the fact that each component of the DMS will be communicating
wirelessly this removes the hassle of a complicated installation onto ones car. It
is also important that the DMS can be powered for a long amount of time. This
makes it convenient for the driver since constant recharging is not needed.The
following list contains specifications for each part of the DMS.

6

Fuel Efficiency
● Displays a graphic on screen that shows drivers how well they are

currently driving.
● Alerts driver during a stop, providing the driver with tips of what they can

do to improve fuel efficiency if the driver is driving poorly.
● Keeps long term data to track drivers progress over a period of time.

Blind Spot Detection

● Must be able to detect objects within 3 meters of the driver’s blind spot.
● Alerts users through their phone or tablet of which side has an object

within the driver's blind spot.
● Only alerts driver while turn signal is active and/or steering wheel is being

turned a specific distance.

Rearview Camera

● Sends a clear video feed from behind the car to the driver’s phone or
tablet.

● Assists drivers while parking in reverse.

Collision Detection

● Alert driver when to begin braking to prevent a head on collision.
● Uses the speed of the vehicle and distance of the object in front to

determine when to brake.

2.3.1 Hardware Requirements and Specifications

The following requirements and specifications are to be used as a guide when
designing the hardware portion of the project. The requirements are meant to be
achievable and as the project progresses may be subject to change.

● The microcontroller used must have low power modes to save battery life.
● The wireless communication module must be compatible with an android

device.
● The sensors used must be able to function in multiple weather conditions

such as rain, high and low temperatures, and foggy conditions.
● The protective casing for the sensors must not fall off of the vehicle during

use.
● All of the components for the project must be able to communicate

wirelessly to an android device, excluding the camera.
● The peripheral placed on the outside of the car must be small enough to

not detract from the overall appearance of the car.

Providing a long battery life is a very important part of the project. A longer
battery life will prevent the driver from having to constantly replace the batteries
of each component within the project. The battery must also last for long periods

7

of time in between recharges. This will eliminate the hassle of the driver to
constantly recharge the batteries in between drives.

The main device of the DMS will be an Android device. This will be the core of
the project. It should be able to maintain a way to communicate with each device
attached throughout the vehicle. The device can either be a tablet or a
smartphone that the driver owns. Ideally the information provided by the DMS
would be available through the Ford Focus’ dashboard. This would allow the
DMS to be an application designed specifically for the vehicle. The Android
device should be able to operate while being charged in the driver’s vehicle. It
must also be able to save data so the driver can refer to it while not using the
vehicle.

2.3.2 Software Requirements and Specifications

The following software requirements and specifications will ensure that the
project meets the defined goals. They may be subject to change, as with the
hardware requirements and specifications.

● The software must be compatible with an android device.
● The program must be able to take in and process data in real-time.
● The program must be able to store data for future use.
● The program must be able to adjust for different visual requirements for

people who are not able to see certain colors.
● The program must automatically switch between the fuel efficiency

monitoring display and the rearview camera display without the driver
interacting with the phone directly.

● The program must have graphs to display fuel efficiency information to the
user.

● The graphs must either display all necessary information, or allow the user
to scroll to view all necessary information.

● The program must have options to allow the user to customize the
program to fit their needs.

● The program must display tips to the user that are specific to the user’s
driving habits, rather than just displaying generic tips.

3.0 Research

3.1 Existing Products/Projects

The following products are post-manufacture hardware additions for personal
vehicles. The idea of having the vehicle and hardware communicate information
to an android app is a fairly new concept so there is a limited amount of products
that fulfill this particular niche. The most complete product commercially available
is automatic link. Automatic link plugs into the vehicles OBD-II port and
communicates with the android host device via Bluetooth. Automatic link

8

provides driving efficiency tips based on your speed and driving habits, calls help
in case of a crash, and helps perform engine diagnostics. Automatic link does not
provide reverse assistance or blind spot and collision detection. Automatic link is
compatible with android and iOS, and DMS will only be compatible for android.
Although Automatic link provides fuel efficiency feedback, it will not be as
accurate as DMS’s because they do not have access to all of the specific vehicle
information that OpenXC has. Although there are not many products that
encompass everything DMS will do, there are a lot of standalone hardware add-
ons that do only one of the specific features.

3.1.1 Blind Spot Product

GOSHERS blind spot detection system is $249.99 and requires an extensive
installation. To install the blind spot detection holes have to be cut in the vehicles
bumper for the sensor placement. The hardware box has to be installed in the
vehicle and the LED indicators must be wired through the interior and placed on
the right and left sides of the vehicle. GOSHERS blind spot detection differs from
DMS in that DMS blind spot detection will alert you with an audible sound, and a
heads up message on the host device if the driver goes to turn an object in in the
way versus using LED indicators.

3.1.2 Fuel Efficiency Monitoring Products

Some vehicles now come with an economy driving mode that can be activated.
The 2013 Honda Civic has Eco Assist™, which is activated when you press the
ECON button. On the dash of the vehicle there is a strip of LED lights on either
side of the speedometer that inform you of how well you are driving for fuel
efficiency by changing color. The Eco Assist™ is much more effective than the
DMS fuel efficiency monitor because not only does it monitor and inform you of
your fuel efficiency it also modifies how the vehicle runs by slowing down the A/C
and making the vehicles acceleration much slower. Eco Assist™ isa core feature
of the vehicle from the manufacturer so it has the ability to control factors that
affect fuel efficiency that post-manufacture additions cannot control.

3.1.3 Rearview Camera Products

There is a wide selection of rear view camera products on the market in a very
wide price range ($100-$500). All of the products available however require the
installation of an LCD screen on the dash, or on the rearview mirror. On the lower
end of the price range spectrum there are rearview camera products such as the
Safesight SC0302. The Safesight SC0302 consists of a camera that connects to
an LCD screen through component cables. The Safesight uses the brake lights
to determine if the car is in reverse. The benefit that the reverse feature of DMS
has over this is that DMS does not need an installed LCD screen because it uses

9

the smartphone, the camera also does not need to sense when the brake lights
are on to activate because it the smartphone will know when the vehicle is in
reverse from the vehicle interface.

3.1.4 Existing OpenXC Projects

Ford has provided drivers with OpenXC, which is an API to Ford vehicles. This
has allowed the Ford community to produce their own aftermarket hardware and
software for vehicles. Since its release many hobbyist have done projects using
information from their Ford vehicle that only can be obtained using OpenXC. The
following projects are just some of the aftermarket hardware and software
devices that have been designed for Ford vehicles using OpenXC.

Haptic Feedback Shift Knob -The Haptic Feedback Shift Knob is a replacement
for the traditional shift knob in a Ford vehicle. The Haptic Feedback Shift Knob
alerts the driver when the optimal time to shift is by vibrating. The goal of this
device is to allow driver’s to pay more attention to the road, while being able to
shift for best performance. It uses an Android application which monitors the
vehicles speed, RPM and accelerator pedal position. The Android device then
sends the signal that causes the Haptic Feedback Shift Knob to vibrate via USB.
There is also a seven segment display at the top of the Haptic Feedback Shift
Knob which displays the current gear position.

Rearview Camera -The Rearview Camera is an Android app that provides
drivers with a way to see what is behind their car. The app was designed by an
intern at Ford and is intended to be used on vehicles that do not come equipped
with a factory rear view camera. A simple USB webcam was used as the camera
and securely placed onto the rear of the vehicle. The Android application
monitors the vehicles gear position and steering wheel angle. When the vehicles
gear position is placed in reverse the camera feed will be displayed to the driver.
On the video displayed to the driver is an outline of the vehicles wheels. The
steering wheel angle is used to determine where the path of the car will be if the
driver continues to move in the same direction.

3.2 Fuel Efficiency

3.2.1 Driving Habits

The choices a driver makes behind the wheel has a direct effect how much gas
the vehicle is using. These choices can range from accelerating to fast all the
way to choosing to keep heavy items in the trunk. DMS aims to help the driver
become more aware of the habits he/she display behind the wheel that effect fuel
efficiency. If the driver becomes more aware of the bad choices he/she is making
behind the wheel and how those choices effect the amount of money spent
yearly on gas, then behavior choices may be made to increase their cars fuel
economy. Below is a table of habits that adversely affect a vehicles fuel
consumption.

10

● Rapidly increasing acceleration and braking frequently can lower gas
mileage between five percent and 33 percent depending on the speed of
the vehicle, which is equivalent to wasting about eighteen cents to one
dollar and nineteen cents per gallon.

● Although it varies depending on the vehicle, gas mileage starts decreasing
at a faster rate at speeds about 50 miles per hour. This can lower gas
mileage between seven and fourteen percent, which is about 25 cents to
51 cents wasted per gallon.

● Having excessive weight in the vehicle can also lower gas mileage by
about one to two percent per 100 pounds. This is equivalent to about four
to seven cents wasted per gallon. [1]

● Idling for extended periods of time decreases gas mileage by about one to
three cents per minute if the air condition is off, over two to four cents per
minute if the AC is on. If the driver has to wait longer than 1 minute, it is
better to just turn off the car while waiting instead of idling. [2]

● Having the air conditioner on can reduce gas mileage from between five
and 25%. [1]

● In stick shift vehicles, fuel is wasted if a person is driving in a gear that is
lower than the necessary gear, so the driver should switch gears as
quickly as possible.

● If the gas cap isn’t completely tightened after refilling gas, gas is able to
evaporate and some of it is wasted depending on how long the gas cap is
in this state.

● Having the windows rolled down increases drag which can hold back the
vehicle and waste gas. [3]

● Coasting toward stoplights rather than braking reduces the amount of fuel
wasted because braking wastes fuel.

● Constantly changing speed can increase the amount of fuel that is wasted,
so using cruise control can improve fuel economy by at most 14% which is
about 43 cents per gallon. [4]

● Revving the engine before turning it off reduces fuel economy. [2]

3.2.2 2013 Ford Focus Information

The vehicle being used in this project is a 2013 Ford Focus, 4-door sedan SE.
The vehicle has a 2.0L I4 GDI engine with a 6-speed PowerShift automatic
transmission. The PowerShift transmission is essentially a manual transmission
that is shifted automatically for the driver using a special software operated
clutch. The EPA estimated fuel economy for this specific vehicle is listed as 33
MPG combined city/highway with 28 MPG city and 40 MPG highway, with an
estimated average fuel cost of $1,600 a year. The EPA estimated fuel economy
is just an estimation and actual fuel consumption may vary depending on driving
habits and factors such as temperature and terrain. The miles per gallon in the
city is significantly less than on the highway mostly due to stop-and-go traffic and
constant idling at stoplights. [2] The vehicle has a built in feature which monitors
the tire pressure and alerts the driver if the tire pressure is at an unsafe level,

11

which also reduces fuel from being wasted as a result of driving with tires that are
not properly inflated. [5] The goal of DMS is to help the driver get as close as
possible to the EPA estimated fuel economy by helping the driver operate the
vehicle more effectively.

3.2.2.1 Current Ford Focus Driving Aids

Every 2013 Ford Focus comes equipped with an ECO MODE driving aid. The
ECO MODE driving aid is a system that assists the driver in driving more
efficiently by monitoring characteristics of gear changing, how well the driver
anticipates traffic controls (sudden breaking ext), and change in speeds while
driving. The driver can view how well they are doing by viewing a flower like
display on the dash that consists of five petals. The petals are filled in as the
driver performs various actions with better efficiency, and made empty as the
driver performs with less efficiency. That is, if the driver is getting the best
possible fuel consumption, and driving efficiently all five petals will be filled. The
more effectively you drive, the better the rating, and the better your overall fuel
economy becomes. With the Ford ECO MODE the efficiency values that rate the
driver do not directly result in a fuel consumption figure, that is, the pedal does
not directly relate to the drivers fuel consumption, but is based on the idea that if
the driver is driving effectively they will have a on average better fuel
consumption rate, but does not necessarily mean that if they have all five petals
full they will be getting the best possible fuel consumption rate because there are
influencing outside factors such as cold weather, hilly terrain, long idles, or short
trips. The ECO MODE criteria of gear position is important to fuel economy,
however, in the model being used for this project gear position is outside of the
drivers control because the transmission is an automatic power shift transmission
that is controlled by software, meaning that the gear positions are preset.

Although the 2013 Ford Focus comes equipped with a way to help the driver
drive more efficiently, it is not a very dynamic system, and it does not provide
extensive feedback. While using the ECO MODE, it runs off current trip, so every
time a driver wants to use it, the driver has to reset the current trip. After logging
many miles, the ECO MODE tends to become “set” and no longer changes if the
driver follows the same driving habits. The DMS aims to provide a better more
dynamic feedback by offering live feedback based on in the moment fuel
consumption, and driving efficiency. DMS will also provide feedback suggestions
that actually help the driver drive more efficiently by providing suggestions based
on the driver’s habits.

3.2.3 Outside Factors

There are factors that may not be directly caused by the driver which can affect
fuel efficiency. These factors need to be taken into account when determining
how much fuel is being used compared to the expected miles per gallon
determined by the manufacturer of the vehicle.

12

● The terrain that is being driven on affects gas mileage. For example,

driving on hilly terrain or unpaved roads can decrease fuel efficiency.
When cars are being tested, they are expected to be on flat roads.

● Cold weather also reduces fuel efficiency because the engine needs to be
warmed up to work effectively. It is recommended to not take many short
trips in cold weather because it does not allow the vehicle to operate at
the necessary temperature. [1]

● If the vehicle’s tires are not properly inflated, fuel consumption can
increase by at most 6%. [3]

● If the spark plugs in the vehicle are bad, fuel economy can decrease by
30% which costs about 94 cents per gallon.

● If the tires of the vehicle are not aligned properly, fuel efficiency can be
decreased by 10% due to the tires dragging rather than rolling freely. It
also wears out the tires and can result in an even greater decrease in fuel
efficiency. [4]

● Vehicles with automatic transmission cannot be controlled by the driver to
get better fuel consumption.

● Idling at stoplights, road intersections, or a type of lawful road stop lowers
fuel efficiency but is outside of the driver’s control.

There are also a number of factors outside of driving habits that influence fuel
economy that can be controlled by the driver, but cannot be monitored or
prevented by DMS. These factors would include things such as not using the
recommended engine oil for the specific vehicle and not performing all regularly
scheduled maintenance.

3.3 Microcontrollers

3.3.1 Overview

The microcontroller that will be used in the DMS will need to meet a certain
number of requirements. The project will require the use of up to four
microcontrollers due to the fact that each circuit will be separate from one
another. This will maintain the wireless aspect of the DMS integration onto the
car. Therefore the microcontroller must be very cheap since the project will
require up to four. Very little power must also be consumed by the
microcontroller. A low power consumption microcontroller will save battery life
while it is not in use. The microcontroller must also be compatible to the addition
of a Wi-Fi or Bluetooth module for wireless communications. This will allow the
microcontroller to relay information to the driver’s phone or tablet located inside
the car. Each circuit will be communicating with the phone or tablet separately.

13

3.3.2 MSP430G2553

The MSP430G2553 is part of an Ultra-Low power 16-bit microcontroller family. It
is manufactured by Texas Instruments and uses the MSP430 Launchpad kit as
the development environment. The development environment includes free
access to Texas Instruments Code Composer Studio which is a tool used to
program the microcontroller. The MSP430G2553 runs off a 16 MHz clock and
uses a low supply-voltage range from 1.8 V to 3.6 V. The supply-voltage range of
the MSP430G2553 is not of a typical value. Most batteries provide a voltage of at
least 5 V. For this reason the MSP430G2553 will require the use of voltage
regulators. The voltage regulators will also help to keep a constant supply
voltage to prevent the microcontroller from being damaged. It has one active
mode and five selectable low-power modes. This feature allows the user to enter
a low power mode during periods of inactivity, and switch to an active mode
without an impact on performance. This is ideal for meeting the low power
consumption requirement. The MSP430G2553 also has a UART connection
which is compatible with a Bluetooth module. This will allow us to send data from
each circuit attached to the vehicle wirelessly. Combining this with the low power
modes allows us to only send one signal at a time when it is appropriate. Lastly,
the MSP430 microcontroller’s family is a very inexpensive option. This is
important due to the project requiring multiple microcontrollers. Table 1 and
Figure 1 contain information on the MSP430G2553 which is relevant to the
project.

MSP430G2553

Operating Voltage 1.8 -3.6V

Max I/O Pins 10

Flash Memory 16 KB

Clock Speed 16 MHz

SRAM 0.5 KB

EEPROM 256 bytes

Max DC Current per I/O Pin 6 mA

Max DC Current for Vcc and Gnd 420 µA

Table 1: Table of MSP430G2553 specifications.

14

Figure 1: Pin layout of the MSP430G2553, permission provided by Texas
Instruments.

3.3.3 ATmega328P

The ATmega328P is a high performance, low power microcontroller designed by
Atmel. It is based off an 8-bit AVR RISC architecture which is capable of
executing 20 MIPS at 20 MHz. This microcontroller provides up to 32 Kbytes of
flash memory, 23 general purpose I/O pins and 1 UART port. The operating
voltage of the ATmega328P ranges from 1.8V to 5.5V. Similar to the MSP430 the
ATmega328P provides low power alternatives while maintaining a high level of
performance. This is done by using a power save mode which allows the
microcontroller to sleep until it is called upon. There are six sleep modes that are
provided by Atmel, all that allow for different modes of functionality. The
ATmega328P can remain in a sleep mode until an interrupt is sent to switch the
microcontroller into an active state. The UART port will also allow the
ATmega328P to receive and transmit data, which allows for a Bluetooth module
to be added on to enable wireless communication. The following table contains
specifications of the Atmega328P which are relevant to the project.

ATmega328P

Operating Voltage 1.8 -5.5V

Max I/O Pins 23

Flash Memory 32 KB

Clock Speed 20 MHz

SRAM 2 KB

EEPROM 1 KB

DC Current per I/O Pin 40 mA

DC Current for Vcc and Gnd 200 mA

Table 2: Table of ATmega328P specifications. [6]

15

3.3.4 CC2541

The CC2541 is a microchip design by Texas Instruments specifically for low
power Bluetooth applications. It combines a RF transceiver and an 8051
microcontroller into one module. The CC2541 can last from several months up to
several years on a single coin-cell battery. Also included within the CC2541 are 2
USARTs, 23 general purpose IO pins, and a built in battery monitor. This chip
provides all the necessary features to implement both the blind spot detection
and collision detection features of the project, unfortunately the price of the
CC2541 is a major trade off for the convenience. The development kit for this
chip is $299.99 from Texas Instruments. This would defeat the purpose of
providing a cheap alternative of safety features for drivers. Table 3 and Figure 2
contain information on the CC2541 which is relevant to the project.

CC2541

Operating Voltage 2.0 -3.6V

Max I/O Pins 23

Flash Memory 128 KB

Clock Speed 32 MHz (High performance 8051)

SRAM 8 KB

EEPROM 1 KB

Transmission Current Draw Tx - 18.2 mA

Receiving Current Draw Rx - 17.9 mA

Table 3: Table of CC2541 specifications. [7]

Figure 2: Pin layout of the CC2541, permission provided by Texas Instruments.

16

3.3.5 Summary

After comparing the three different types of microcontrollers that were
researched, the group has decided to use the MSP430G2553. All of the group
members have experience with the MSP430G2553 as it was used in a previous
course. The MSP430G2553 also is much cheaper than the other options for
microcontrollers. This helps keep the cost down due to requiring multiple
microcontrollers to be placed in different places along the vehicle. Texas
Instruments also provides many resources which makes the programming of the
MSP430G2553 simple to learn and easy to use.

3.3.6 UART Communications

Most microcontrollers, including the MSP430, provide a UART channel which
allows for wireless communication with the addition of a compatible Bluetooth or
Wi-Fi module. UARTs typically use communication standards such as RS-232,
RS-422 and RS-485. A UART connection does not require both devices to
operate on the same clock cycle, but does require a specific set of
configurations. The UART transmits a byte of data serially to another device one
bit at a time. The receiving device then rebuilds the entire byte. The following list
contains information on what specifications must be configured properly to
enable a UART channel.

Baud Rate - is regarded as a data transmission rate. The Baud rate should be a
high value, this allows the devices to send and receive signals at any time.
Typically it is set to 9600Bd for UART communications.

Data bits - are the amount of bits that are sent and received by the two devices
connected via UART. The length of the data bits is typically 8.

Stop bits - are used to indicate that a byte has just been transmitted. Typically a
byte of data is followed by a start bit.

Parity -is another bit that is added to the end of a byte. This bit indicates whether
the number of bits in the byte that are high (1). Typically parity bits are used in
error detection.

3.3.7 Programming Languages

It is important to choose the correct programming languages for the project so
that all of the devices are compatible with one another. It is also important to
choose programming languages that all the group members are comfortable with
using. The MSP430 microcontroller is compatible with C and Assembly
programming languages. The development environment provided by TI allows
someone to program the MSP430 in either language. The Android API primarily

17

uses Java and will be used to implement the Smartphone application. The
following programming languages may be used within the design and prototyping
stages of the project.

Assembly Language - Assembly language is a low level programming language
used on programmable hardware. Every line of code is an instruction which is
implemented by the device. Assembly languages are specific to particular
computer architectures, such as MIPS and Intel x86. The microcontrollers used
within the project can be programmed using assembly language.

C - C is a flexible language that is quite fast and places few constraints on
programmers. It was originally designed for system software applications. It
provides low level access to information while keeping the syntax of a high level
language. The microcontrollers used within the project can also be programmed
using C.

Java - Java is a programming language which is considered as an Object
Oriented Language. Its syntax is a combination of C and C++ with additional
features. Java programs run on a virtual machine. This allows Java applications
to be ran on multiple computer architecture platforms. Since Java runs on a
virtual machine this makes it easy to use on mobile applications since there is
compatible with different types of phones. Java will be the main programming
language used to program the DMS Smartphone application.

Extensible Markup Language - Extensible Markup Language, also known as
XML, is a markup language that encodes documents in a format which is
readable both by users and computers. XML is a programming language which is
similar to HTML. It is intentionally designed to structure, store, and move data. It
does not do anything requires a programmer to write software which can either
send, receive or display the data within the XML file. Application Programming
Interfaces (API) typically help programmers with processing XML files.

3.4 Application Development

3.4.1 Android Development Environment

To program an Android application, Android Developer Tools (ADT) that are
compatible with the compiler of choice will be used. Java programming language
is used to program Android applications. Android provides an ADT bundle for
Eclipse which comes with an Eclipse ADT plugin, Android Software Development
Kit (SDK) tools, Android platform-tools, the latest Android platform, and the latest
Android system image for the emulator. The ADT allows the GUI to access many
SDK tools and User Interface design tools which allows for quick application
designing. The ADT provided by Android allows for Android project creation,
building, packaging, installation, debugging, XML editors, and SDK tools all to be
integrated into Eclipse. [8] In order to test Android applications, it is possible to
either use an emulator or to use an actual Android device that is connected to the

18

computer. If an emulator is used, however, it will be likely much slower than an
actual Android device so if a test needs to be run at a fast speed, it is better to
use an actual Android device rather than an emulator. However, by using an
emulator, it is possible to test different Android devices with different
specifications in order to verify whether or not the program works on different
Android devices.

3.4.2 OpenXC Application Programming Interface (API)

OpenXC API consists of hardware and software that allows developers to gather
data from their vehicle in order to create android Applications for their vehicle.
The vehicle interface is a small piece of hardware that reads what the vehicle is
doing and transmits it to an Android application that uses the OpenXC library.
OpenXC was developed to allow for people’s personal vehicles to be just as easy
to program as any other application. However, it cannot be used to actually
modify the vehicle’s behavior; it can only transmit data gathered through the
vehicle interface.OpenXC contains the following signals, shown in table 4, which
may be useful for making an android application for a vehicle. This isn’t a
complete list of all of the possible signals, it is just an example of some of the
signals that may be used for the application.

Signal Value

steering_wheel_angle numerical, -600 to 600 degrees

torque_at_transmission numerical, -500 to 1500 Nm

engine_speed numerical, 0 to 16382 RPM

brake_pedal_status boolean (true == pedal pressed)

transmission_gear_position states: first through eighth, reverse, neutral

fuel_level percentage

door_status state: driver, passenger, rear_left, rear_right
event: boolean, true == ajar

ignition_status states: off, accessory, run, start

high_beam_status boolean (true == on)

accelerator_pedal_position percentage (0% == not pressed)

odometer numerical, 0km to 16777214.000km

Table 4: Table of Some OpenXC Signal Names [9]

19

3.4.3 Android Connectivity and Data Storage

Android provides a rich application framework, this section will detail the different
API’s that DMS could possibly use to connect to other devices to receive data
and to store data. [8]

3.4.3.1 Android Classic Bluetooth

Android includes support for the Bluetooth network stack allowing Android
devices to communicate wirelessly with other Bluetooth devices. An Android app
can gain access to the Bluetooth functionality through the Android Bluetooth
APIs. Using the Android Bluetooth APIs available in the android.bluetooth
package, an application can scan for other Bluetooth devices, query the local
adapter for paired Bluetooth devices, establish RFCOMM channels, connect to
other devices through service discovery, transfer data to and from other devices,
and manage multiple connections.

Out of all of the things the Android Bluetooth APIs can do the most important for
DMS will be managing multiple connections and transferring data to and from
other devices. The application will be responsible for managing multiple
Bluetooth connections while also receiving data from different devices. The
Bluetooth classes listed in the list below are part of the android.bluetooth
package and are required if the DMS is to use Bluetooth to connect to the other
devices

BluetoothAdapter -The BluetoothAdapter class in the entry point for all Bluetooth
interaction. In order for the android device to communicate using Bluetooth the
default method BluetoothAdapter.getDefaultAdapter() must be called, and will
return a BluetoothAdapter object that represents the Android devices own
Bluetooth radio.

BluetoothDevice -This class represents a remote Bluetooth device and is used to
request remote connection through a BluetoothSocket or to query information
about the remote device.

BluetoothSocket -This class represents the connection point that will allow DMS
to exchange data using input and output streams with other Bluetooth devices.

BluetoothProfile -This class contains BluetoothProfile.ServiceListener and will be
important to DMS to notify other devices when they have been connected to or
disconnected from service.

The various Bluetooth classes will have to be used to establish, manage and
maintain connections to the other Bluetooth devices that are part of DMS. The
management of the other hardware peripherals is an important part of how DMS
functions.

20

3.4.3.2 Android Low Energy Bluetooth

Bluetooth Low Energy (BLE) has some of its own key terms and concepts that
require understanding in order to use a BLE device. DMS could benefit greatly
from using BLE because of the nature of its sensing devices, and for that reason
the key terms and concepts are important to this project.

BLE profiles are all based off the generic attribute profile (GATT), which is a
general specification for sending and receiving small packets of data known as
“attributes”. Bluetooth SIG contains many pre written GATT profiles and can
implement more than one profile at a time. Attributes define service and
characteristics. A service is simply a collection of characteristics, and
characteristics hold descriptors that are defined values.

BLE has functions with two devices having defined roles in the communication.
One device has a central role, scanning for an advertisement from the device in
the peripheral role. The device in the peripheral role is the device that makes the
advertisement. In the case of DMS it would make sense to have the sensor act
as the GATT server and the phone to be the GATT client, because the sensor
should report to the phone if there is activity.

BLE uses some of the classic Bluetooth classes but also has some of its own
classes for defining services, GATT, and call backs, all of which DMS will use if
BLE is implemented for this project. The GATT notification class would also be of
importance because the sensor would need to notify the phone of state changes.

3.4.3.3 USB Host and Accessory

Android supports USB accessories and peripherals through USB accessory or
USB host mode. USB accessory mode the external hardware act as a host to the
android device. Some examples of hardware that function in USB accessory
mode would include devices such as docking stations or card readers. In USB
host mode, the Android acts as the host, instead of the hardware acting as a
host. In USB host mode a wide range of USB devices can be used if the Android
application is written to correctly communicate with the device. USB host mode is
the mode that DMS would use to communicate with the camera. In order for
DMS to communicate with the USB camera the application must be able to
establish connection and pull data from the USB camera. The USB
communication between the DMS and the USB camera device will function as
displayed in Figure 3. When the android device is in host mode, it powers the bus
and enumerates the host device. In order for an Android powered device to
function as the host device it must run Android 3.1 or later, therefore it will be
assumed that users have Android 3.1 or later. In order to connect the USB
camera device the android host APIs in the android.hardware.usb package will
be used.

21

Figure 3: Communication between USB camera and device.

In order to connect the usb device and receive information using the
android.hardware.usb package certain classes from the package will be required.
In specific the classes listed in table 5 will be needed.

Class Description

UsbManager Allows enumeration and connectivity with connected
USB devices.

UsbDevice Creates a USB object that represents a USB device
and contains various methods for access.

UsbInterface An interface for the USB device that defines a set of
functionality for the device.

UsbEndPoint Will be used to establish an input/output endpoints for
the communication channel.

UsbDeviceConnection Use to transfer data on the established endpoints.

Table 5: Classes that will be used for the project.

Communication with the USB device can either be synchronous or
asynchronous, and all data transmissions should be carried out on an
independent thread because it is possible to interfere with other data
transmissions occurring with the DMS. To establish communication the proper
usb interface will be chosen, along with the appropriate USB endpoint for the
chosen interface. At the endpoint a USB device connection will be opened and
the function for transferring data will be called.

3.4.3.4 Android Data Storage

Android provides multiple ways to save persistent application data, which is
important for DMS because long term driving data will be stored on the device.

22

Possible types of data storage that Android provides that will be of interest to this
project include shared preferences, internal storage, and network storage.

The SharedPreferences class will allow DMS to save and retrieve persistent
primitive data types. Persistent in that the data will persist across user sessions
even if the application is turned off. The data types the SharedPreferences class
supports are booleans, floats, integers, longs, and strings. This means that user
preferences for the application can be easily saved and will persist across
sessions. It is also important to note that the SharedPreferences is not
exclusively just for storing user preferences, because it can store primitive data
types that are static, it can also be used to store numerical information that
should persist across application sessions. The methods in the
SharedPreferences class that will be important to the project are detailed in table
6, the methods include how to load and save data using the SharedPreferences
class.

SharedPreferences Method Description

getSharedPreferences() Allows the loading of a specified
preference file.

edit() Calling edit will instantiate a
SharedPreferences editor.

 putBoolean(), putString(), ext The various put methods allow
adding values to the preference
file.

commit() Commits the new values so they
are saved.

getBoolean, getString, ext Reads preference values from
preference file

Table 6: Shared preferences methods that may be used.

It is important to note that getSharedPreferences() takes a file name as an input
parameter because it is intended for use with multiple preferences. For DMS this
function could be used to allow multiple users to use the same phone to track
vehicle data.

Internal storage can be accessed by an application using OpenFileOutput()
which returns a file output stream that can be used to output to an internal file on
the phone device for the application. Any internal storage file is private by
default, but can have its viewing rights modified by pre-defined constants such as
MODE_WORLD_READABLE. If in this project internal storage is used, the
methods found in Table 7A will be of particular interest.

23

Internal Storage Method Method Description

openFileOutput() returns a file output stream object
that allows output to specified file

openFileInput() returns a file input stream object
that allows input to specified file

write() used with the file output stream to
write bytes to the file

read() used with the file input stream to
read bytes from file

close() used with the file input and/or
output stream

openRawResource() Method allows the use of static file
that is saved at compile time

getCacheDir() Used to open a file if information
added to file is to be cached

getDir() creates or opens a directory in
internal storage

fileList() returns a list of files from current
directory in internal storage

Table 7A: Internal storage methods that may be used.

When using cache and the device is low on internal storage space the Android
device may delete the cache files. If cache files are used with DMS they will need
to be maintained by the application not the device, a cache size should be set
and maintained. When the user uninstalls the application the files are removed.
Other storage possibilities that can be explored are cloud storage or SQlite
databases.

3.4.4 Android Application User Interface

In an Android application the user interface consists of views and view groups.
The view group is essentially the layout and holds other views and view groups.
In this top level abstraction, every android applications UI layout is a collection of
view groups and views. An example of a view hierarchy for an application such
as DMS is shown in Figure 4.

24

 Figure 4: View Hierarchy for an Android Application

A view hierarchy tree can be as complex or as simple as a program needs but for
DMS the hierarchy should be simple because a specification is to have an
application that is easy to navigate. The layout of the hierarchy tree can be made
by declaring view objects in code and manually building the hierarchy, but the
Android developers guide suggests that the best way to create user interface
layouts is with an XML document. [8]

3.4.4.1 Android UI Layouts

Android provides two main ways to create layouts for an application. The first
way is to create the layout using an XML file, and the second way is to create the
layout programmatically in the source code as one would with a Java application.
The first option of using the XML file to define layouts has its advantages over
creating the layout programmatically, the drawback is that not everyone who can
program is familiar with XML layouts, and it is arguable that anyone programming
in Android should be, so for this project the method of using XML will be explored
in further detail. One of the main advantages of creating the application layout
using XML is this allows the programmer to better separate the code that controls
the behavior of the app from the portion that displays the events to the user.
When using XML the UI is external to the code for the application which means
that the code can be modified and adapted without extensive reworking of source
code.

Android provides four major layout options: Linear, Relative, List and Grid. Linear
layout allows aligns all of its components in either vertical or horizontal rows.
Linear layouts can be nested into a parent-child relationship. In Figure 5 an
example of this parent-child relationship is shown, the main box represents a
parent linear layout that has its orientation set to vertical. With the parent having
a vertical layout its children will be placed vertically but each child can also have
its own linear layout. The green children have a horizontal linear layout but are
placed vertically within the parent. The red child represents a larger standalone
child that is not part of a nested group but simply placed within the parent in a
vertical orientation. Linear layouts can be used in this way to create very
complex nested layouts but is also very inefficient. For More complex layouts a

25

relative layout can be much more efficient than a linear layout. Linear layout also
supports the weighting of child elements. The weights given to children
determine how much the children pad to fill out remaining space on the screen.
For example, in Figure 5 if the green children had a weight of zero and the red
child had a weight of 1, it would stretch to fill out the rest of the parent because it
has a higher weight value than the green children, and a weight of zero on the
green children means that they will not change size at all.

 Figure 5: Linear Layout example

Relative layout is a layout that allows child views to be displayed in relative
positions and can be used in combination with linear layouts to create more
efficient user interfaces that do not require multiple nested linear layouts. Each
child's position can be specified relative to its sibling using commands such as:

● android:layout_below- This can be used to place the specified
view below a resource that has been identified by the resource id.

● android:alignParentTop- When this is set to true the view will be
aligned so that its top edge will match the top edge of its parent.

● android:alignParentBottom- When this is set to true the view will
be aligned so that its bottom edge will be aligned to the parent’s
bottom edge.

Relative layout has an entire library full of different assignments to adjust the
location of views relative to other components, the examples above show how
relative view can be used to eliminate nested linear layouts. The full list of layout
properties is available in the android class RelativeLayout.LayoutParams. In
Figure 6, that some layouts can be achieved more effectively. Instead of login

26

and cancel being part of a nested linear view each can just be a component of a
relative view and do not need to be nested, just linked with a Boolean variable.
Keeping the layout with as few “layers” as possible is a convention that is used to
improve the performance of apps. Keeping the layout simple is not only a
requirement for DMS but also keeping the layout with as few layers as possible
will help the application run faster which will be important to an application that
performs many calculations.

Figure 6: Relative Layout Example

For DMS a combination of linear and relative views would be the best option for
creating a layout. The layout will for DMS should be coded in a XML file and
stored in the layout folder of the application and simply instantiated in the
OnCreate method in every android app. It is important to note that in the XML file
dependencies against other views. For example in Figure 6, Login and Cancel
could be declared below User Name before user name is aligned to the top of the
parent. For this reason it is also more convenient to code the android layout in
XML than coding the layout programmatically.

3.4.4.2 UI Input controls

Input controls are important to every application, they act as the medium to
transfer input from the user, through the UI, to the program. Essentially they
allow the user to tell the program what functions they would like performed, input
information into the program, and can also allow the program to prompt the user
for information. Android provides a variety of input controls that interface with the
user interface layouts, but because of the simplicity of the layout for DMS not all
of the input controls need to be researched, the input controls that will be needed
in the DMS application are detailed in Table 7B.

27

Control Type Class Name(s) Description

Button android.widget.Button Simple push button that can
be clicked to provide input
options from user.

Check Box android.widget.CheckBox A basic on/off switch that can
be used in groups that are
not mutually exclusive

Radio Button android.widget.RadioButton
android.widget.RadioGroup

A basic on/off switch that can
be used in groups, however
only one option can be
selected.

Toggle Button android.widget.ToggleButton A singular on/off switch that
has a light indicator

Spinner android.widget.Spinner A dropdown set of options
that allows one selection to
be chosen.

Text Field android.widget.EditText

android.widget.

AutoCompletTextView

An editable text file that can
provide output to users and
do things like an automatic
text file.

Table 7B: Android input control buttons.

The android.widget class contains many other useful methods for controlling
input but these are the most important to the DMS application. Each of these
input controls have their own functions that allow the application to check for user
input and methods that allow the programmer to create custom looks for the
application. For example a button can be sized and textured with an image, or a
custom shaped button can even be created for the application. The other
mentioned input controls have similar versatility and customization to the button.
The widget class is very versatile and will enable DMS to have professional
looking input controls. The input control buttons seen in Table 7B are used by
most Android applications. Android makes these input control buttons implement
for an app designer. When designing the Android application layout, these will be
used to interface the Android application with input functionality. This allows the
user to use the buttons placed on the screen to easily navigate through the
menus. Additional input control buttons may be needed to implement the DMS.

28

3.4.4.3 UI Event Handling

Although input controls such as buttons and handlers allow the user to interact
with the application, each input control needs event handling to communicate to
the application what the user wants to happen. For example if there is a mute
button and the user pushes the mute button, the buttons event handling should
mute the volume. The goal then for event listeners is to capture the events that
are specific to the view object that the user interacts with. With Android, the View
class is used to accomplish the events from a view. The methods listed in Table
8 are call back methods included in the android interface that will be important to
creating event listeners for DMS. Each callback method will be called by the
android framework for each implementation of a listener.

Method Call
Back

Listener Description

onClick() View.OnClickListener If an OnClickListener is attached
to a view object such as a button,
when the button is clicked the
android framework will call the
onClick() method defined for that
OnClickListener

onKey() View.OnKeyListener If an OnKeyListener is attached
to a view object , when the
defined key or key(s) are pressed
the onKey() method will be called
by the android framework

onFocusChange() View.OnFocusChange
Listener

If an OnFocusChangeListener is
attached to a view object, the
onFocusChange() method will be
called if the user navigated onto
or away from the item.

 Table 8: Table of method callbacks for event listeners.

There are a number of different ways to attach a listener to a view and implement
the callback function to do what is desired. The programmer can choose to
create an anonymous implementation of the listener and then attach the listener
to the button in the application onCreate() method, or the Activity that contains
the onCreate() bundle can implement the listener. The third way and the way that
DMS will most likely handle listeners for view objects is to define the listener in
the XML layout, then within the Activity that hosts the layout create a function
with the same name that is defined in the xml layout. The function must be
public, return void, and take only a view as a parameter. The relationship

29

between the different parts of the code are detailed in Figure 7. In the XML
layout the code highlighted in red tells android that the login button will have a
click listener and the corresponding onClick() method that should be used is
called “Login”. In the code the function Login is contained in the Activity that
implements the layout that contains the button. In this way the listener is defined
in the XML layout file, defined in the code, and the two come together to create a
button that has a listener attached that executes the Login function when clicked.
By attaching the listener in the XML layout, the code becomes more organized
and the layout becomes easier to debug if problems arise.

Figure 7: Process of rendering a button in layout with click listener attached.

3.4.4.4 UI Settings

DMS will need to have settings that allow the driver to customize the application
for his/or her needs. For example if the driver wants to disable noise notifications,
set how often data should be reset, or other various settings, they should be
handled properly. The convention when programming an application for Android
is to handle application settings using Android’s preference class. The reason
why Android suggests that the settings be handled through the
android.preference. Preference class is to maintain consistency across
applications. If DMS uses a settings panel, the settings will be managed and
displayed using the Preference class. The setting class does not use view
objects like the rest of the user interface, instead the setting menu is generating
using Preference objects. Although the settings menu is built out of Preference
objects, the Preference objects are still declared using an XML file. The
generation of the UI for the settings is handled by Android automatically so that
the settings for the application are consistent with other Android setting menus.
When a preference object is declared in the XML file it a key-value pair is also
associated with the Preference object and saved in a SharedPreferences file that
is default used for storing application settings. SharedPreferences data was
covered in section 3.4.3.4, and details how to access these files and the types of
primitive key-value pairs that can be stored in a SharedPreference data file. The
Preference objects are similar to the input control view objects covered in 3.4.4.2,
containing lists, check boxes, ext. Similar to declaring a layout in XML except

30

preferences also have their own XML attributes and are saved into a separate
folder. The folder that the settings preference file should be saved in is res/xml
and is traditionally named preferences.xml but can be named anything as long as
it is a legal name. The XML attributes found in Table 9 are of importance to
creating a XML file that contains the settings that DMS will need. There are many
attributes for preference objects that allow for customization such as custom
layout attributes, or attributes specific to a preference object type. However, all
preference objects will have the three attributes found in Table 9.

XML Attribute Description

android:key

The key is required for any
preference that is going to store a
data value in the default
SharedPreferences file for settings.
The key is represented by a string
and is used as a unique identifier
for the key-value that the
preference stores.

android:title

The title attribute will specify what
the name of the preference object
is. This name is what will be
displayed to the user.

android:defaultValue

The defaultValue sets the default
key-value for a preference object.
Android coding practice specifies
that the default value for a
preference should always be
initialized.

Table 9: Required XML Preference Attributes

The Preference class contains many other advanced features for settings such
as the ability to open a web address to configure settings, creating sub menus,
and displaying data usage for phones. The additional features will not be used by
DMS, the requirements set for DMS specify that the application should be easy
to navigate and set up, therefore the settings for DMS should be easy to access
and set.

3.4.4.5 UI Toasts

In order for the DMS application to supply feedback suggestions to the driver,
user interface toasts will be needed. A toast allows an application to provide
feedback in a simple popup. The toast will only take up as much space on the
screen as is required to encapsulate the message in the toast. Another important
feature of a toast is that the toast will not interrupt the current activity. In the DMS

31

application if a suggestion is made while the vehicle is at a standstill, the
suggestion should not interrupt the current on-screen activity, therefore the user
interface toasts will be the correct choice for providing feedback to the driver. To
create a toast, the toast object must be instantiated with the makeText
constructor, and is displayed to the screen with the toast.show() method. For the
purpose DMS will use the toasts for, the toasts will need to be able to have
position changes, and custom layouts. The position changes are detailed in
Figure 8, will allow the DMS application to present toasts in different areas of the
screen, with a visible and easy to view layout.

Figure 8: Position change for toast

Toasts come with a default layout and background, in the toast shown in Figure 8
if what is shown is the default layout provided by Android and DMS needed one
with a different color background and a vertical layout, a custom icon image, and
colored text, a custom layout for the toast can be declared in an XML layout file
and applied to the toast, the process for this is detailed in Figure 9.

Figure 9: Using XML layout file to create custom toast.

32

The XML sample is not the complete layout file for the toast but contains the key
values that are needed for the features of this custom toast. In the layout the
toast is assigned an id so it can be found, an orientation, and a background color.
The image section tells the layout what drawable image is going to be used
(@drawable/Face) and the TextView formats how the text behaves within the
toast. Using a XML layout file to define custom toasts will keep the toast layouts
consistent with how the layouts for the rest of the application will be designed.
DMS will have multiple different toasts so for each unique toast a layout file will
have to be created with a unique id.

3.4.4.6 Styles and Themes

Styles and themes allow the developer to set different properties for the
application in terms of font, layout, and color. They can be used to easily
separate the design from the content of the program because they keep the
general layout properties in an easy to manage spot, rather than mixing them in
with other parts of the code. This allows the developer to keep the code
organized and also to be able to easily switch between different styles and
themes within different parts of the code. Styles and themes are similar but the
difference between them is themes are applied to an activity rather than a view,
as with styles. So, styles will only affect a single screen, but themes will affect a
larger section of the program. For example, in the layout XML file, instead of
defining the layout width, layout height, text color, and typeface every single time,
the developer can turn that into a style and instead simply use the name of the
style in the layout XML file instead. [8] An example of how the code in the layout
XML file is organized is shown below in figure 10. The first box represents the
original code. The second box represents the same code but in a simplified
manner. The third box represents the style code which is not stored in the layout
XML file, but rather in an arbitrary XML file in the res/values/ directory.

Figure 10: Styles and Themes example

33

Styles and/or themes will be extremely useful in making the app accessible to
people who have varying levels of color blindness. Different themes can be
created and made available through the settings panel allowing vision impaired
users to make adjustments so they can safely see the application. Styles and
themes can also be used to give users a variety of layouts that will allow the user
to customize the look of the application in fun ways.

3.4.5 Graphing Tools

GraphView library is an open-source library for java programming to be used in
Android applications. It will be used for this project because of its different
features which will be detailed below. This library allows for the creation of both
line charts and bar charts with few lines of code, so drawing the graphs will not
cost a significant amount of time. This is important because the data will be
gathered in real time and there may be a lot of data points so this should not
cause the application to slow down or potentially harm other parts of the
application. The data can be inputted into a chart and displayed in the application
with different options to display the desired information. It can show multiple lines
on a single graph if desired. A legend can be displayed for the user to be able to
quickly understand the graph. The library allows for incomplete data to be
inputted which is necessary for this project because, for the charts which will look
at improvements over time, not all time slots will have data. It has the ability for
the programmer or user to set the viewport so that only some of the data will be
on the screen at once. In addition, it allows for easy scrolling by the user so the
user will be able view past data points in an easy-to-use manner. This is
necessary for this project because the user needs to be able to see how they
have improved from day one until present day. The library also allows for
zooming so the user can adjust exactly where they want to look on the chart and
how much of the chart they want to be displayed at one time. The programmer is
able to change the colors of the charts using this library, which is necessary for
colorblind assistance and aesthetic or functional purposes. [10]

3.4.6 Colorblind Assistance

For an application that wishes to allow people to have a real-time knowledge of
their fuel efficiency without distracting from driving, it is necessary to make
adjustments to the display for people to customize based on which type of vision
they have. With normal vision, it is possible to see all colors, including the traffic
light colors: green, yellow, and red. Colorblind people may be able to tell which
traffic light is on based on which they perceive to be brightest and the position it
is in, but that is not a possibility with this project’s application due to the screen
being a single, solid color.

People with monochromacy have a very uncommon condition, but they are able
to see only black, white, and different shades of gray. There are two types of red-
green color-blindness; people with deuteranopia color-blindness have an

34

absence of green retinal photoreceptors and people with protanopia have an
absence of red retinal photoreceptors. They are both able to see blue and
brownish yellow shades. People with tritanopia have blue-yellow color-blindness;
they have an absence of blue retinal receptors. They do not have the same
issues with the red, yellow, green system in comparison to people with red-green
color-blindness, because for them red looks like red, green looks like light
greenish blue, and yellow looks like white. [11]

3.5 Sensors

Both the blind spot sensor and the collision detection sensor will be made up of a
sensor. The blind spot sensor must be able to determine when another vehicle
has entered the driver’s blind spot. The driver will then be alerted via their
android device of which side the vehicle is located. The collision detection sensor
must be able to determine whether or not a vehicle is located in front of the
driver. It must also be able to calculate the distance between the vehicles in front
of the driver using this information along with the speed of the driver’s vehicle to
determine when the best time to brake is.

3.5.1 Ultrasonic Sensors

Ultrasonic sensors work by sending out a sound wave and measuring the echo
that is received. This is also known as sonar. Ultrasonic sensors use a
transmitter and receiver to determine if an object is in front of it. This can be seen
in Figure 11. A transmitter initially sends a pulse and a receiver looks for the
returning signal. Sending and receiving a signal allows the sensor to determine
the distance of an object by calculating the time elapsed between the emitting
and receiving of the signal. These sensors are very good at determining the
distance an object is from the sensor. One drawback that the ultrasonic sensor
has is that when it is placed at an angle it may not receive the signal back or
cause false triggers. Another issue is that there is no way to distinguish objects
from one another.

The following equation is used to determine the distance of an object. Where d is
the distance of the object, c is the speed of sound in air, theta is the angle of
incidence between the signal and the object being detected, t is the time between
the emitting of a sound wave and detecting of the echo.

d =
ctcos(θ)

2

Figure 11: Equation for ultrasonic distance

35

Figure 12: Visual representation of how an ultrasonic sensor works.

There are two types of ultrasonic sensors, piezoelectric transducer and
electrostatic transducers. The main difference between the two are the materials
that make them up. Electrostatic transducers contain a thin metal plating while
piezoelectric transducers are made of a ceramic material that is bonded to a
case. Electrostatic transducers are generally more sensitive than piezoelectric
transducers. Although they are more sensitive electrostatic transducers cannot
be sealed in a protective casing which makes them vulnerable in rougher
environments.

3.5.2 Passive Infrared Sensors

Infrared sensors measure infrared light emitting from objects. Infrared light
oscillates in a range of 300 GHz to 430 THz and is not visible with the human
eye. These sensors are useful when detecting motion as they look for a change
in infrared levels. An infrared sensor is typically made of detecting halves that
both measure infrared light. There is no motion detected when each half
measures the same infrared light level. When there is a moving object in front of
the sensor each half will measure a different infrared light level, this allows the
sensor to detect an object in its range of vision. These sensors are easy to use,
last long, and consume very little power. Although one limitation includes the
beam width being very small. This means that an object must be directly in front
of the sensor in order to be detected.

3.5.3 Microwave Sensors

Microwave sensors act in a similar manner to ultrasonic sensors. This type of
sensor uses electromagnetic pulses to detect motion. Microwave sensors send
out high frequency electromagnetic pulses and measures a change in the
reflected frequency that is received. When an object moves into the field of a
microwave sensor, the sensor compares the measured frequency to the average
measured value. These sensors are based off the basic Doppler Effect principle.
The Doppler Effect is a change in frequency of the emitted waves caused by the
movement of an emitting source relative to an observer.

36

The following equation can be used to set the sensitivity of a microwave sensor
by ensuring the change in frequency is large enough to be measured. Where fx is
the observed frequency, f is the emitted frequency, c is the speed of the wave in
the air, vs is the velocity of the source and vo is the velocity of the observer.

f x =
(c − Vo)

(c − Vs)
× f

Figure 13: Formula for calculating Doppler Effect. [12]

3.5.4 Light Sensor

Light sensors, or photosensors, have the ability to detect visible light, infrared
light and ultraviolet light. To implement a photosensor a photodiode is typically
used. Photodiodes can convert light into either current or voltage. Photodiodes
work when a photon reaches the diode. The photon then excites an electron
within the diode creating a hole-electron pair. The number of hole-electron pair’s
increases as more light is applied to the photodiode. This leads to an increase in
current flowing. In the case of not being able to retrieve the turn signal status
from the OBD-II port, a light sensor may be used to determine when the turn
signal is being used. The light sensor must small enough to be placed inside of
the tail light.

3.5.5 Alternative Options

One alternative sensor that could be used to implement the project is a lidar
detector. Lidar detectors measure distances remotely using a laser instead of
sound waves. A laser is reflected off a target and the reflected light is analyzed to
determine the distance of the object. Unlike radar, lidar detectors reflect off all
types of materials which is useful when dealing with different type of targets.
Lidar detectors are very accurate over long distances, but they are also very
expensive. These sensors are used in military applications, robotics, and many
more areas. Lidar detectors face limitations when used in moving applications
because the object must be actively targeted.

3.6 Wireless Communication

3.6.1 Bluetooth

Bluetooth is used in all sorts of electronic devices from mobile phones to
watches. The Bluetooth protocols let devices find and connect to each other in an
act called pairing, and securely transfer data. Bluetooth is a proprietary host-
slave wireless communication protocol that uses predefined profiles that act
similar to structures in coding, defining the type and names of data to be
expected in data transfer. Bluetooth comes in both standard and low energy

37

architectures, the low energy architecture being specifically designed for sensor
communication. [13]

3.6.1.1 Bluetooth Architecture

The basic unit of a Bluetooth system is known as a piconet. A piconet consists of
a master node with up to seven slave nodes within ten meters. Multiple piconets
can interact with each other using bridge nodes, interacting piconets are known
as a scatternet. A device connected to the master can be placed into a “parked
state” to save battery. In the parked state the slave cannot do anything except
respond to an activation or beacon signal from the master. With Bluetooth the
master device controls the conversation, determining which connected device
gets to communicate. The conversation between devices in Bluetooth can only
occur between master and slave, slave to slave conversation is not possible.

3.6.1.2 Bluetooth Low Energy

Bluetooth 4.0 with low energy technology can run for years on coin cell batteries.
The low energy Bluetooth is good for small, discrete data transfers. With low
energy Bluetooth data can be triggered by local events such as sensor, and data
can be read at any time by a client. Although Bluetooth low energy does not
support data streaming it is designed for sending small chunks of data for state
alerts. The Bluetooth low energy is most likely the best choice for the blind spot
and collision detection modules, because they only need to send a very limited
amount of data to the host device. Standard Bluetooth low energy specifications
can be seen in the table below.

Range ~ 150 meters open field

Output Power ~ 10mW (10dBm)

Max Current ~ 15mA

Latency 3 ms

Sleep current ~ 1µA

Modes Broadcast, Connection, Event Data
Models,Reads, Writes

Table 10: Table of Bluetooth low energy technical specifications.

The blind spot detection feature needs to have a fast data transfer time because
if something is in the driver's blind spot the alert cannot be delayed for long
periods of time. The latency of 3ms is fast enough to handle the data transfer for
the blind spot detection feature.

38

3.6.2 Zigbee

Zigbee networks allow multiple devices to connect to one another wirelessly.
Zigbee networks provide fast and reliable connections which is useful when
constantly transferring data. Zigbee is a wireless personal area network (WPAN).
It is typically used for periodic data transfer from an external device, such as a
sensor. The range a Zigbee network may span can range from a few feet to
approximately 70 meters, which is large enough to implement the project. The
downside to using Zigbee technology is that it is not fully compatible with
Smartphones. This is due to the smartphone’s wireless technology operating on
different frequencies and protocols from the Zigbee. This is an issue when
dealing with mobile devices that may be in constant use. Using a Zigbee
connection may also drain the battery rapidly, which could result in a much
shorter battery life.

3.7 Power

3.7.1 Batteries

The DMS components will be powered by either a lithium ion battery or the lead
acid battery located in the vehicle. The battery chosen must be able to power
each circuit which will be located in different areas of the car. The battery must
also be rechargeable so that it may be used over a long period of time.

Lead-acid batteries - Using a lead acid battery is a convenient and cheap option
due to having one already being used by the vehicle. A lead acid battery in a
vehicle provides 12 V which can be used to power each circuit attached to the
vehicle. Some major benefits of the lead acid battery in a vehicle include high
reliability and lifespan, can be easily replaced by the driver, and constant
recharging by the alternator located in the vehicle. Powering the circuits attached
to the vehicle with the lead acid battery will require a much more complicated
installation process for the user.

Lithium-ion batteries - A lithium-ion battery is useful due to its compact size
which will allow each circuit to be powered separately allowing for a wireless
design. Most lithium-ion batteries provide about 3.6 V to 4.1 V. A charging circuit
and controller will be required to maintain the batteries longevity. One drawback
of the lithium-ion battery is that it ages and deteriorates while not in use. A
lithium-ion battery is also sensitive to heat which will cause the battery to
degrade rapidly. The charging and discharging process of a lithium-ion battery is
due to the movement of energy between anode and cathode. Although the
lithium-ion battery discharging process is not a chemical process, lithium-ion
batteries still face performance losses over time. Lithium-ion batteries also have
a self-discharge of 2-3% per month, which is low in comparison to other
batteries.

39

Lithium-ion batteries are different from other batteries because of a higher
voltage per cell. Most of these batteries tolerate a max charge to about 4.2 V per
cell. The battery is no longer charged once this threshold is reached, allowing the
voltage to slowly 3.6 V and 3.9 V. In typical cases a lithium-ion battery will not be
fully charged. This prevents high voltages from causing stress on that battery
which could lead to a decrease in performance. It is important not to overcharge
past this threshold as charging past the voltage threshold can cause the lithium-
ion battery to oxidize, potentially leading to the battery catching on fire and
exploding. Due to this the charging circuit must be able to determine the full
charge state accurately to prevent overcharging.

3.7.2 Voltage Regulator

A voltage regulator is a device which allows us to provide a constant voltage to
each component of the project. Due to using multiple microcontrollers and
sensors within the DMS, the voltage provided must be a constant value. The
common voltage range for a microcontroller being used in the project is between
3.3V and 3.6V. Also, the sensors that will be used during the experiment will
require a constant voltage in the range of 3V to 5V. The voltage regulator that will
be used within the project will need to provide a max load current that can
support each component, must be able to take an input from a 12V car battery or
lithium-ion battery and must provide a precise output voltage. The types of
voltage regulators that were researched for use within the project are linear
voltage regulators and switching voltage regulators.

3.7.2.1 Linear voltage regulator

These regulators are used when stepping down a voltage. This is where the input
voltage of the regulator is greater than its output voltage. Due to this the
efficiency of a linear voltage regulator is limited. Linear voltage regulators use a
voltage divider to set a constant output voltage. The voltage difference between
the input and output is then dissipated as heat. An example of a linear voltage
regulator can be seen in Figure 14.

Figure 14: General schematic of a linear voltage regulator.

40

The op-amp’s output will fluctuate to maintain an equal voltage across its positive
and negative terminals. This relationship between the positive and negative
terminals of the op-amp is used to regulate the output voltage. [14]

3.7.2.2 Switching voltage regulator

Switching regulators use the same model as the linear voltage regulator (Figure
14), but includes a switch to that allows it to shut off. These regulators are used
to switch a device on or off. Switching voltage regulators can either step down or
step up a voltage. Therefore its input voltage is not required to be higher than its
output voltage. The efficiency of a switching voltage regulator is generally much
greater than a linear regulator. One reason this is true is because a switching
voltage regulator is either fully operating or shut off, which leads to very little heat
being dissipated. One downside to switching voltage regulators is the amount of
noise that is generated. The switching device within the regulator generates high
levels of noise.

3.8 Rearview Camera

3.8.1 Camera

Connecting a webcam to an Android device should be able to be done via USB,
Wi-Fi, or Bluetooth. Very few Bluetooth enabled webcams have been developed,
so it would not be worthwhile to try to include them in the project due to the
added difficulty. Wife enabled webcams tend to be expensive and would be too
costly for the project and for the potential future users. In order to keep the cost
low, a USB camera will likely be used, with appropriate measures taken to wire
the webcam to the android phone. Logitech webcams have had success with
connectivity to Android devices, so a Logitech webcam, preferably under $40, will
be used. Two specific Logitech webcams, the HD Webcam C270 and HD
Webcam C310, will be detailed below. These may not be the actual webcam
used, but they are good options. They have the same specifications except one
takes higher quality pictures so whichever one is used will be based on price
rather than functionality. [15]

● 720p
● Up to 1280x720 pixels
● USB 2.0
● Automatic Light Correction
● 5-foot cable
● 3 x 8.2 x 6 inches
● Always focused

If there were more funds for the project, it would be possible to use a Wi-Fi
camera instead. A possible Wi-Fi camera would be the Logitech Broadcaster Wi-
Fi Webcam. It costs approximately $199. Using this camera would eliminate the

41

need to run a wire from the back of the vehicle to the front of the vehicle,
because the device would just need to access the webcam via Wi-Fi. However,
the application would need to be on an OSX device such as a mac computer,
iPad, or an iPhone, because the webcam only works with OSX devices. The
specifications of this webcam are shown below. [16]

● 720p
● Three times digital zoom
● Built-in illumination lamp
● Digital pan and tilt
● 2-hour battery life
● Battery charged via USB.

This would be an excellent option if the application was being developed for OSX
instead of for Android. The digital zoom and pan and tilt would allow for more
functionality on the device, allowing the user to change the camera angle of their
backup camera. It also has the built in lamp allowing for vision when it is dark.
But, the battery life, which is typical for other Wi-Fi cameras as well, would be a
huge downside, as well as the cost.

4.0 Hardware and Software Design Details

4.1 Software Design

The software in this project consists of an Android application. The Android
application communicates will all of the different hardware components of the
project. The layout of the Android application is simplex so that it is easy to
navigate. The stored data within the application is kept to a minimum in order to
decrease lag while using the application. The following sections will detail the
application’s layout as well as different design choices such as color scheme and
audio as well as functional choices such as the fuel efficiency calculations.

4.1.1 Android Application

The Android application portion of DMS consists of various menus that will either
affect the program or will display information to the user. The application starts
on the main menu screen and branches off into six different choices: start driving
session, last driving session, driving history, your fuel economy, options, and
credits. Driving history branches off into further options, either allowing the user
to view one of the past driving sessions or to view an overview. This is where the
driver can see all of their driving data. This data may contains a summary of the
fuel efficiency score that was gathered during the history of the user using the
application. Your fuel economy contains a further break down of the bad driving
habits that the user frequently commits as well as indicating if the user is

42

improving.The options button contains different choices: audio toggle, rear view
camera toggle, change colors, and test colors.It also allows the user to erase
saved data if they choose. The options allow the driver to turn on or off certain
features that they may want or not want. This allows the driver to customize the
DMS to fit their needs. For example if the driver does not want to be bothered by
the blind spot detection system, it is possible to deactivate audio notifications for
their trip. This removes the hassle of needing to remove the device each time it is
not wanted by the driver.The change colors sections allow the user to choose
from predetermined color sets labeled normal, monochromacy, deuteranopia and
protanopia, or tritanopia. These are different forms of colorblindness which help
colorblind drivers use the Android application with ease.This is shown below in a
view hierarchy in Figure 15.

Main Menu
(View Group)

Your Fuel Economy
(View)

Driving History
(View Group)

Options
(View Group)

Last Driving Session
(View)

Start Driving Session
(View)

Credits
(View)

Past Driving Session
(View)

Overview
(View)

Rear View
Camera Toggle

(Button)

Change Colors
(View Group)

Test Colors
(View)

Erase Data
(View Group)

Audio Toggle
(Button)

Erase Long Term
Data

(Button)

Normal
(Button)

Tritanopia
(Button)

Monochromacy
(Button)

Deuteranopia &
Protanopia

(Button)

Erase Charts
(Button)

Figure 15: View Hierarchy of DMS Android Application

The Unified Modeling Language (UML) Class Diagram for the DMS Android
Application is shown below in figure 16. It shows the different attributes and
operations for each class. This will be used as the base of the Android
application for the DMS.

43

Options

audio : Boolean
rearViewCamera : Boolean
colors: String

audioToggle(audio) : Boolean
rearViewCameraToggle(rearViewCamera
) : Boolean
testColors(colors : String)
showColorOptions() : String
showEraseOptions() : String

Main

showStartDrivingSession()
showLastDrivingSession()
showDrivingHistory()
showYourFuelEconomy()
showOptions()
showCredits()

Driving History

showPastDrivingSessions()
showOverview()

Start Driving Session

ignitionStatus : String
acceleratorPedalPosition : Float
brakePedalStatus : Boolean
vehicleSpeed : Int
totalScore : Float
storeData : Data

calculateScore(ignitionStatus,
acceleratorPedalPosition,
brakePedalStatus, vehicleSpeed) : Float
detectBlindSpot()
detectCollision()
startRearViewCamera()

Last Driving Session

storedData : Data

displayGraph (storedData)

Your Fuel Economy

displayFuelEconInfo()

Credits

displayCredits()

Change Color

changeToNormal() : String
changeToMono() : String
changeToDeuterNProta() : String
changeToTrita() : String

Figure 16: DMS UML Class Diagram

The UML class diagram in Figure 16 is not exhaustive, that is, the class diagram
does not contain all variables and methods needed to implement all of the
features in the DMS application, the UML diagram in Figure 16 is intended as a
general overview of how the different classes are structured and how
communication occurs using methods and instantiated objects. DMS will have
service processes running in the background that perform connectivity and data
transfer services in the background of the app, these background services are
not included in this class diagram as they are associative. The services continue
to run even when the app is downsized to the tray, in this way if the application is
interrupted during operation, connectivity and data transfer do not stop.The
connections between the android application and the sensors are severed when
the application is returned to the tray, but the connections are reestablished
immediately upon opening up the application.

The following OpenXC signals, shown on table 11, are be used in the Android
application. The uses of the signals will be detailed following the table.

44

Signal Value

vehicle_speed numerical, 0 to 655 km/h

accelerator_pedal_position percentage (0% == not pressed)

brake_pedal_status boolean (true == pedal pressed)

gear_lever_position states: neutral, park, reverse, drive, sport, low,
first through sixth

ignition_status states: off, accessory, run, start

steering_wheel_angle numerical, -600 to +600 degrees

turn_signal_status states: left, right, off

Table 11: Table of OpenXC Signal Names that will be used.

The program will not start running until ignition status is START. Although other
statuses will still waste fuel, the program is supposed to assist with driving, so it
does not start running until the engine has been started. The program will
continue to run until the application is closed or connection with OpenXC is
severed.

The turn signal status signal will be added to the OpenXC library in the future
which and would have been used in this project if it were available. In the project,
it would have been used to activate the left or right blind spot detection. However,
because it has not been implemented yet, the steering wheel angle is used
instead. A value between -110 and -45 is considered a left turn. A value between
45 and 110 is considered to be a right turn.

The gear lever position signal would have been used for the rear view camera. If
the gear lever position is reverse, the rear view camera would have activated on
the android device. If the user had chosen to deactivate the rear view camera,
the gear lever position being reverse will result in no changes. However, because
the rearview camera did not make it into the final project, this functionality was
removed.

The vehicle speed signal is used to determine the user’s acceleration. The past
10 accelerations are stored and a weighted average is used. The acceleration is
determined by taking the current vehicle speed, subtracting it from the previous
vehicle speed, and dividing by 50ms which is the clock cycle on which the
application runs. It is also used to determine if the user speeds over 70mph
which is stored as a bad driving habit. The vehicle speed signal is also used to
determine if the user is idling, which wastes fuel. If the vehicle speed is 0,
assuming that the engine is running, then the program will notify the user that
they are wasting fuel.

45

The accelerator pedal position signal is used to determine if the user is
accelerating too hard. The brake pedal position signal is similarly used to
determine if the user is braking too hard. They will be used together to determine
when the driver is accelerating and braking too soon afterward, which is
determined by checking the brake pedal position within 10 seconds of pressing
the accelerator.

All of the signals mentioned previously are necessities. Further signals could
have been used to provide more data to the user. One such example would have
been the fuel consumed since restart signal in conjunction with the odometer
signal which could have been stored in order to tell the user their actual miles per
gallon. However, for simplicity sake and to have more control over the results,
this was not included. This is because the user may feel like they are not
improving simply because their miles per gallon do not seem to be improving.
However, it may have just been based on a circumstance that was out of the
user’s control that caused this to happen.

4.1.2 Real Time Fuel Efficiency Analysis

In order to determine fuel efficiency, a score between 0 (bad) and 100 (good) is
given based on the driver’s driving habits. At the start of each calculation cycle,
which is 50ms, all necessary signals will be gathered from the vehicle interface.
Before making any calculations, it will be determined if the driver is doing
anything that triggers other parts of the application, such as driving too close to
the person in front of them or trying to turn when there is a vehicle in their blind
spot. If these occur, the appropriate sound will be played to notify the user.
Afterward, orif none of those triggers have occurred, a series of if-statements will
check each signal to determine if the driver is exhibiting any negative driving
behaviors. These if-statements are shown in figures F1 through F6. The
calculations for each different section are set on a delay to insure that a single
bad driving habit does not overpower the rest of the bad driving habits in a short
period of time. The actual score is based purely on the vehicle speed which is
used to calculate acceleration. The score calculated this way does not change
instantaneously. Instead, the score gradually counts up or down until it reaches
the target score. This is to prevent the application from flashing a lot of different
colors at once.Also, this will allow for the user’s score to remain low if they are
continually exhibiting bad driving behaviors. It will also allow the user’s score to
remain high if they only make a small mistake for a very short period of time.

Score: As shown in Figure (F1) the vehicle speed is gathered using past data.
The weighted average is found using stored accelerations 1-9 and the newest
acceleration that was calculated this clock cycle. The application checks if the
user is braking or accelerating and adjusts the score to fit this, with braking
having a smaller multiplier effect.

46

Receive

vehicle_speed

a1 < 0?

atotal =

weighted

avg(a1-a10)

TrueFalse

New a1 =

(vehicle_speed –

previous vspeed)*20

Receive a1

through a9

a1=a1*-1

Braking?

Score =

atotal*10

Score =

atotal*6.25

False True

Display Score out of

100 as a color gradient

Figure (F1): Score which produces the color gradient.

Accelerating hard: The harder that the accelerator is pressed, the quicker the
driver is accelerating, and the more fuel that is wasted. Figure (F2) shows how
this is being taken into account. A point is added to the acceleration bad habit if
the user meets the requirements, with a total of 1 point given out every 30
seconds.

Receive

accelerator_pedal_position

accelScore + 1Go To F3

Receive Score

Accelerator

pressed?

Score < 50?

True

True

False

False

Figure (F2): Calculating acceleration score

47

Braking hard: Braking hard wastes fuel, so any time the driver is braking hard, a
point will be added to the brake score as shown in Figure (F3). This is similar to
the acceleration score from Figure (F2). As such, 1 point is given out every 30
seconds.

Receive

brake_pedal_position

brakeScore + 1Go To F4

Receive Score

Brake pedal

pressed?

Score < 50?

True

True

False

False

Figure (F3): Calculating brake score

Speeding and idiling:Going too fast wastes fuel and is taken into account as
shown in Figure (F4). The speed calculations are done in km/h rather than mph;
81 km/h is about 50 mph and 105 km/h is about 65 mph. Speeding over 70 mph
is penalized with 1 point every 30 seconds due to the maximum speed limit in
Florida being 70mph. In addition, if the driver idles, which means the vehicle’s
speed is 0, they are also wasting fuel. Idling is only taken into account if it has
occurred for longer than 1 minute, so that the user is not penalized for short
stops at stop lights, stop signs, or when parking their vehicle. The idle score is
only increased once every time the driver has idled for more than 1 minute. It
does not increase after 2 minutes, 3 minutes, and so on.

Receive

vehicle_speed

Speed >

112 km/h
TrueFalse

Go To F5

speedScore + 1
Speed = 0

False

True

idleScore + 1

For > 60

seconds?

True

False
Figure (F4): Calculating speed and idle score

48

Idling: As shown in Figure (F5) if the driver presses the accelerator past 20%
and then brakes within 10 seconds, they get a mark toward the brake and
accelerate score. This is because braking soon after accelerating significantly is
usually avoidable and wastes fuel unnecessarily.

Go To F6

Accelerator

position >

20%?

False

True

brakeAccelScore

+ 1

Brake pedal

pressed?

False

Receive

brake_pedal_position

Receive

accelerator_pedal_position

Within 10

seconds?

True

False

True

Figure (F5): Calculating idle score

Final: After all the calculations are made, they are stored away for future use
within the program. If the user is idling, a message is displayed based on which
of the scores is maximum. This is shown in further detail Figure (F6). Afterward,
whichever message was shown has the score reset to 0 to make room for other
messages to show up next time. The process should be repeated approximately
every 50ms.

Receive

accelerationScore

Receive

brakeScore

Receive

speedScore

Receive

idleScore

Restart from

F1

Idle for > 1

minute?

Display idle

message

True

Is

brakeScore

max?

Is

speedScore

max?

Is

acceleration

Score max?

FalseFalse

Display brake

message

Display speed

message

Display accel

message

TrueTrueTrue

Reset score to

0

Display good

driving

message

Receive

brakeAccelScore

Is

brakeAccel

Score max?

FalseFalse

Display brake

after accel

message

True

Figure (F6): Calculating total score and finishing process

49

4.1.3 Long Term Analysis and Messages

All of the data gathered as mentioned in the previous section is stored into
shared preferences or a file on the Android application and after the driving
session is over, the data needs to be analyzed to be put to use by the user. The
total drive time of each driving session is divided into 10 second segments. All of
the data points within each time period will be added up and averaged to find the
total score for that time period. This will be placed into a new file which is read by
the overview graph and displayed to the user. The original data is shown in the
last driving session graphand it is also stored in the driving history section as
well, until 10 new driving session has occurred, in which case it will be wiped
from memory. This allows the user to view up to 10 previous driving sessions. In
addition to this, as mentioned previously, all of the data will be added up and
averaged over the time period. This new data point will be added to a completely
separate file which will store the entire user’s driving history. It will show them
their improvements, even from months beforehand. If it becomes too memory
intensive, the user is free to erase all graph data, however.

After analyzing the data, the program will generate messages to display to the
user based on their driving habits. These messages will both be displayed on the
screen while the user is at a stop light, and on another section of the program
called “Your Fuel Economy.” All of the messages that are possible to see in the
application are shown below. The first six messages are shown while driving, and
the following seven are only shown in the “Your Fuel Economy” section of the
Android application.

 You have been idling for more than 1 minute. If you know you will be idling
for an extended period of time, consider turning off your vehicle’s engine.

 You are driving fuel efficiently.

 You are accelerating too hard. Consider accelerating slower to reach your
desired speed.

 You are braking too hard. Consider slowing down by lifting off the
accelerator ahead of time if you know you need to stop soon.

 You brake too soon after accelerating. Look ahead to see if you will need
to brake soon, and try to not accelerate before then.

 You drive over 70 mph frequently. This decreases your fuel efficiency; you
might want to slow down.

 Fuel efficiency starts decreasing at speeds over 55 mph.

 It’s recommended to drive under 65 mph to maintain good fuel efficiency.

 Accelerating and braking frequently reduces your fuel efficiency.

 Idling wastes fuel, so idling for more than 1 minute should be avoided.

 Stopping quickly wastes fuel, so try to gradually reduce your speed if you
know you need to stop.

 Accelerating too fast wastes fuel; it’s better to only lightly press on the
accelerator.

 It’s a good idea to put your vehicle in neutral at stop lights.

50

4.1.4 User Interface

4.1.4.1 Aesthetics

The application is visually appealing while also maintaining a simplex design.
The colors chosen for each color scheme option, with consideration to people
with color-blindness, are non-distracting colors that contrast so that the user will
not have difficulty reading charts and navigating different screens. The colors are
primary and secondary colors combined with black and white allowing for a sleek
display. Few images are used within the application but the charts and any
displays will look professional rather than tacky. The purpose of keeping the
colors and design simple is because the application is meant to be used for the
user to view information that has been gathered and stored while driving and to
be able to easily see how they have improved over time. The colors used while
driving are intended to be easy to view at a glance, or with peripheral vision, no
matter the user’s color vision. This means careful consideration has to be made
to make sure that the color combinations used in the gradient produces distinct
colors that are not confused with other colors within the gradient. They also were
chosen keeping in mind the colors typically used in the world of driving. For
people with normal vision, this means green, yellow, and red. However, for
people with different forms of color vision, there was consideration made to make
sure that the colors were distinct but also represented what those users are able
to see within the real world as well.

4.1.4.2 Layout and Accessibility

The main menu of the application has buttons for users to go to different parts of
the application. The buttons are: Start Driving Session, Last Driving Session,
Driving History, Your Fuel Economy, Options, and Credits. Each section after the
main page has a button which allows the user to return to the previous page.
This button is built into Android devices so it will not be necessary to add it to the
actual program, but it will be tested to make sure it is functioning appropriately,
especially at the end of driving sessions. The application is able to be used in
either landscape or portrait view and the buttons are easy to view and press.
However, certain screens lock into landscape mode. This happens while driving,
in order to make sure everything is viewable to the user, as well as while reading
some of the charts in the application.The layout is shown in figure 17. The layout
in the figure is in landscape mode. This is just a demonstration for this report so
that the picture does not take up too much space; it will not be required to
actually be in horizontal view if the user does not wish for it. To have it in
horizontal view, all that is necessary to do is to turn the Android device
horizontal. It will automatically switch between a horizontal or vertical view
depending on how the user has decided to hold their Android device. The same
is true for the pages that will have graphs. The graphsautomatically switch
between horizontal and vertical view without the user needing to press any
button on their Android device.

51

Figure 17: Main Screen

● The “Start Driving Session” button activates the application which monitors

the user’s fuel economy while driving.
● The “Last Driving Session” button displays a graph with the information

gathered during the most recent driving session. It gives a general timeline
showing different colored bars for the times at which the user was using
good, moderate, and bad driving habits. The colors will be a gradient.
Because the data is gathered in real time, the time is displayed on the x
axis.

● The “Driving History” button shows a chart with a single data point for
every driving recorded driving session, showing the average score for that
driving session. It also allows the user to view full charts for some or all of
their past driving sessions.

● The “Your Fuel Economy” button is a section that notifies the user of how
they can improve their fuel economy by analyzing what has caused them
to score “moderate” or “bad” during past driving sessions. It also shows
them how they have improved and provides general fuel economy hints.
There is a button on this screen which gives a further break down of all of
the bad driving habits that have been recorded and analyzed while the
user is driving.

● The “Options” button allows the user to change the color scheme of the
program, test the colors they have chosen, turn on and off audio
notifications, and turn on and off the rear view camera. It also lets the user
erase graph data and bad driving habits data. This includes a confirmation
window just in case the user presses the button on accident.

● The “Credits” button displays the names of all people who worked on the
project as well as any other sources that contributed to the project.

52

4.1.4.3 Graphing

The GraphView library allows for data to be easily displayed in either a bar graph
or a line graph. For the purposes of this project, the bar graph us used for the
individual driving sessions and the line graph is used for the overall driving
sessions. The bar graph allows for different colors to be visible to represent how
well the user is driving and allow the user to easily see their score. The color
displayed is a gradient between the three different colors representing good,
moderate, and bad driving habits. The data is inputted into the graph in a series
of data points. The format for the data points is (X, Y) with the number in the X
place being the time and the Y place being the score. Before or after each data
point is entered, it is possible to change the color of each individual point on the
graph. In this project, this will be done using an algorithm that is shown below in
figure 18. The score is represented on a 0 to 255 scale and no number can be a
decimal. If a decimal is created by the calculation, it will be rounded to the
nearest integer. Red is represented as 255|0|0, yellow is represented as
255|255|0, and green is represented as 0|255|0.

Figure 18: Algorithm for deciding color

The algorithm above produces some color between the three goal colors
depending on the score. An example of how the algorithm appears in the actual
program is shown in figure 19. It is possible to see how the colors fade into other
colors as the score decreases. The lowest score produces a red color, but as the
score gets higher it turns into different shades of orange, and then it goes to
yellow, and then it changes to more of a green-yellow, before going to green. The
higher shades of green are a little difficult to tell apart but they are different
colors. These colors are the same colors that will appear on the actual
application while driving. If the user has chosen different color settings, the color
calculations will change to accommodate the new colors allowing for a gradient
between those colors as well. It should be possible to come up with a generic
algorithm that will produce a gradient between any three colors, but the gradient
will be hard coded due to the limited amount of color options.

53

Figure 19: Example graph made using GraphView and color algorithm

4.1.4.4 Color Themes

The available color themes in the application are based on different levels of
color vision. People with normal color vision have the default option: Green for
good, yellow for moderate, red for bad fuel efficiency. However, different options
are available for color blind people.

People with monochromacy have the option: White for good, gray for moderate,
black for bad. This allows them to easily tell how they are driving because the
lighter the color is, the better they are driving. This option can be used by any
person no matter the amount of color they are able to see, but the graphs may
not be as easy to see because the background color will have to exactly match
one of the possible bar colors.

In order to allow the application to be used by people with red-green color-
blindness, either deuteranopia or protanopia, there is a color option which
displays: Blue for good, white for moderate, red for bad fuel efficiency. The red
color looks more like a brown-yellow color to the user, but it is used to avoid
confusion because the person will likely already associate that brown-yellow
color with “stop” due to the prevalence of red meaning stop in society.

Even though people with tritanopia should do not have as many difficulties with
telling apart green, yellow, and red, they have the option to set the display to:
Green for good, white for moderate, and red for bad fuel efficiency. People with
this form of color-blindness could also use the red-green colorblind option without

54

having any issues with the application while driving. It is still be recommended for
them to choose the appropriate option on the application because the rest of the
colors used in the application, such as for the charts, will be adjusted according
to the options chosen. Also, using green instead of blue and white instead of
yellow clears up some confusion between colors.

There is a preview option in the application so that the user can make sure they
can tell the different colors apart, as well as enabling them to familiarize
themselves with which colors represent good and bad driving behavior. The
colors displayed are not three solid colors only. Instead, they are a gradient
between the three colors. The colors can be seen in the following image.

Figure 20: Different color options different types of color vision

4.1.5 Safety Features

The part of the application that deals with recording information while the user is
driving purposefully will not have any buttons or any way for the user to interact
with it. This is to discourage people from messing with their phone while they are
driving. If the application is closed prematurely, such as if the user receives a
phone call,it is reopened automatically without needing the user to interact with it.
If the user is unable to establish connection with OpenXC, they are able to see if
on their phone before driving so they can fix the issue when they are in a safe
position. Also, if the user quits the application after pressing the “Start Driving
Session” button but before actually starting their car, they will not receive any
error message.

The application does not contain any flashing images or colors in order to be safe
for people who have epilepsy. If the user is stable enough to drive, the colors
changing on the phone while the user is driving should not be quick enough to
trigger a seizure. However, there are safeguards in place to make sure that the
colors do not change in rapid succession, considering that there may be a
passenger who has epilepsy and may be able to see the display. This is done by
changing the color gradient gradually on every clock cycle rather than having the
color change automatically to the actual score that was calculated on that
particular clock cycle. This also prevents false positives or negatives, because a

55

score being good or bad for a short period of time will not have much effect on
the gradient.

The phone is intended to be mounted on a platform that holds it securely in
place. It should not be prone to falling down and it should be strong enough to
hold onto the phone even if the car quickly changes speed or direction. It should
also be strong enough to hold onto the phone in case the user is in an accident,
to avoid the phone becoming a projectile. The Android device should also be
mounted in such a way that the user is able to see the device without looking
directly at it or turning their head. It is up to the user on how they place the
Android device, but the group is not held accountable for the user choosing a
poor location. It is a similar situation to positioning the Android device for using
GPS directions, however the user needs to be able to view the application with
their peripheral vision or else the application cannot be used appropriately. This
is because the fuel efficiency part of the application relies on the user being able
to see the application without looking directly at it, which is why distinct colors are
chose and fill the whole screen. This also allows the user to utilize the images for
sensor detections because the images contrast greatly with the backgrounds.

The application allows for blind spot detection while driving. To activate blind spot
detection, the user needs to turn their wheel to the appropriate angle as
mentioned in previous sections. In order to avoid distracting the user while they
are driving, blind spot detection will be done via audio notifications by default.
Because it is possible to disable audio notifications, or because the user may be
deaf, it will also display an arrow with a cross through it if it is not okay to change
lanes. A different audio notification also plays if the user is too close to another
object that is in front of their vehicle. A message saying “TOO CLOSE” will be on
the screen as well, for the same reasons as mentioned previously.

4.1.6 Audio Notifications

Audio notifications are used either when the user is trying to switch lanes or
when the user is driving too close to an object that is in front of their vehicle. If
the user is trying to switch lanes, it will be activated as soon as the user turns
their steering wheel either between -110 and -45 degrees for a left turn or 45 and
110 degrees for a right turn. In order to not be distracting to the user, it will
produce a beeping noise similar to the native noise that turn signals make when
they are activated. However, the noise differs enough that the user will know
whether or not it is safe to turn. If nothing is detected in the blind spot, no noise
will be played. However, if something is detected in the blind spot, the noise is
activated in order to alert the user that it is not safe to switch lanes. The audio
notification will only take into account the blind spot that is on the side of the car
that the turn signal is set to. For example, if the wheel angle is between -110 and
-45 degrees, it is considered “LEFT,” and the audio notification will only take into
account the sensor that is on the left side of the car. If there is a car in the right

56

blind spot but no car in the left blind spot, the user would receive a notification
indicating that it is safe to turn.

If the user has deactivated the noise notification from the options menu, then no
noise will occur while the turn signal is activated or while an object is too close to
the front of their vehicle. However, they are still able to make use of the blind
spot detection by looking at the large picture on their phone, but they will not be
able to hear any notification. Pictures only occur if the noise would be playing,
which means that the user does not have to worry about mistaking a safe image
for a not safe image. They can still view if it’s safe out of their peripheral vision.

There are only two noises that are ever played to the user. These are the “too
close” noise and the “blind spot” noise. Because the user will be able to tell
through practice, or by glancing at their screen, which noise represents which
message, it is not necessary to allow the user to test the sounds on the
application beforehand. There also aren’t any audio choices for the user because
the sounds were chosen to be simple and unique. Allowing further options could
confuse the user.The available sounds were chosen such that they will not
potentially startle the person who is driving. They are also natural and helpful
rather than loud and potentially surprising. They do not mimic actual emergency
vehicle noises, so as to not confuse the user into thinking there is an emergency
vehicle nearby when there is not. Due to the length of time that the sound will
need to be played varying per each situation, the audio files are relatively short
and will repeat for the full time that the sensors are detecting the objects. The
length is actually 500ms even though the clock cycle is 50ms, but this is okay
because the user needs to be notified for an extended period of time if there is
something in their blind spot or if they are too close to the vehicle in front of them.
Also, it prevents the noise from being too obnoxious because it is repeated less
frequently.

All sounds used in the application were received from an open source location.
Short sound bites were retrieved and further edited to make them even shorter
than they were originally.In accordance to the terms of service in the open source
location, it is not necessary to credit the location of the sounds within the
application. The graphics used, however, were created originally by the group
and thus no credit is needed.

4.1.7 DMS Toast Generation

DMS will generate Android toasts, detailed in section 3.4.4.5, which are
essentially small pop up messages that stay for a set period of time then fade
away, leaving the current activity on the device uninterrupted. The toasts that are
generated for DMS will provide suggestions to the driver based on how they are
doing during their current driving session. DMS will also generate toasts that
accompany verbal alerts for the sensors installed on the vehicle. If there is a
blind spot detection alert, then there will be a toast to the screen to alert the

57

driver to the situation. The toasts will have a custom layout for each type of toast
so that the driver can distinguish between suggestions and alerts. The custom
layouts for the two types of toasts are displayed in Figure 21. If the toast is for an
alert it will have yellow background with stop signs on both sides, the text will be
black and bold to alert the user. If the toast is a suggestion to improve a driver's
driving habit, the toast will be gray and white with a frown face. If the toast is to
give the driver positive feedback it will have a similar look to the suggestions but
will be accompanied by a smiley face.

Figure 21: DMS custom layout toasts

The suggestion toasts will be generated based on the driver’s habits during the
current driving session. To accomplish this the driver’s habits will have to be
recorded. To monitor the driver’s habits, each criteria will have its variables
examined, if the variables lie within ranges that are determined to be detrimental
to driving economy then the habit will be recorded. The different criteria and the
associated vehicle attributes are shown in table 12.

Driving Habit Associated Vehicle Attributes

Over Acceleration Torque at transmission, Accelerator pedal
position, Engine speed.

Breaking to often Accelerator pedal position and Brake
pedal status

Speed over 70 mph Vehicle speed

Idling longer than 60 seconds
while in park or neutral

Transmission gear position

Frequent Lane Changes Steering wheel angle

 Table 12: Driving Habit and Associated Vehicle Attributes.

58

The driving habits are monitored using the combination ranges and thresholds for
the various vehicle attributes associated with the driving habit. If the values fall
within ranges deemed unacceptable for economic driving the infraction will be
stored and used to decide what suggestions will be generated. The generated
suggestions for each monitored driving habit are available in Table 13. The
suggestions are designed to inform the driver on how to correct the bad habits
they are exhibiting often.

Driving Habit Suggestion

Over Acceleration “Try not to accelerate as fast to increase your
gas mileage”

Breaking to often “Breaking less frequently will increase your
gas mileage!”

Speed over 70 MPH “Excessive speeding costs you more in gas
money.”

Idling longer than 60 seconds
while in park or neutral

“Idling for longer than 60 seconds is bad, if
you plan to be in your car for a while, try
shutting it off to save gas.”

Frequent Lane Changes “Try not to change lanes so frequently.”

Table 13: Driving Habit Suggestions.

In order to determine what suggestions need to be generated as toasts, driving
data is collected, and compared against calculated conditions, ranges and
thresholds for each bad habit, if the driver falls with any of the bad habits, the
habit will be recorded in a list for that driving session. The list will be a data
structure that is created upon the start of each driving session. As the user
drives, if any bad habits are exhibited the list will be updated and the infraction
will be recorded. The list is needed to generate the suggestions which will be
chosen based on the bad habits the driver commits most often. The committed
bad habits will be displayed only when the vehicle is not currently moving, and
will be sent from a queue where the queue is generated from most committed
offence to least committed offence, but only committed offences will be put into
the queue. At the end of each driving session the list will be saved for long term
analysis, but the queue will be reset. To ensure that the queue does not always
bump the most committed offence to the top of the queue because of priority, if a
most committed offence has been displayed in a diving session its priority will be
reduced. In this way the committed offences will generate toasts each time the
driver stops, and the suggestions will be cycled through so that the driver doesn't
get the same suggestion over and over, but the driver may see the same
suggestion more than once if he/she keeps committing the offence because it will
be added to the list, and be assigned a place in the queue. The process for
generating the bad habit list in detailed in Figure 22.

59

 Figure 22: Process for updating Driving Habit List

As detailed earlier in this section, DMS will contain other toasts besides the
driving suggestions. DMS will also provide toasts for the sensors. The toasts for
the sensors will be activated when the conditions for the sensor activating are
met and the sensor responds with a result indicating an object is in the way of the
vehicle. The toast will simply indicate what side of the vehicle is on and warn the
driver to avoid any actions in that direction. For example, if the left blinker is on
and the left blind spot detection circuit sends a positive to the phone indicating
that there is something in the blind spot, the toast will pop up on the screen
informing the driver that there is something in the left blind spot.

4.2 Hardware Design

4.2.1 Vehicle Interface

4.2.1.1 Overview

A vehicle interface module connects a vehicles onboard diagnostic port to a
computer and transfers vehicle data to the user. Information that a vehicle
interface could send from the car to a computer includes, but is not limited to,

60

steering wheel angle, vehicle speed, brake pedal status, accelerator pedal
position and fuel status.

The Ford OpenXC vehicle interface is a custom made OBD-II reader which has
access to information that is specific to each Ford model. It uses a dual-channel
CAN transceiver to read information from the vehicle. The vehicle interface is
designed to be compact so that it can be used while driving without hitting the
driver’s knees. Features that are included onto the vehicle interface include
Bluetooth for wireless data transfer and a 12 V port to power additional devices.
The vehicle interface connects to the vehicles OBD-II port and transfers data to a
computer or android device wirelessly. This eliminates the need for cable
connections to the vehicle and to the computer being used. An image of the
vehicle interface can be seen in the following image (Figure 23).

Figure 23: Vehicle interface module that was provided by Ford.

The vehicle interface used in the project was provided to us by Ford. The vehicle
interface contains a Bluetooth module within it. This allows for wireless
communication to the users android device or pc. This gets rid of the need for a
USB cable to attach to other devices. The vehicle interface uses a NXP LPC1768
microcontroller as the core of their hardware design. Ford chose this
microcontroller due to it having many available products available to the
community. This allows for a large amount of community driven Ford projects.
The Vehicle Interface takes in a 12V input from the vehicles battery. Two low
dropout linear voltage regulators are then used to provide 5V and 3.3V for the
microcontroller and peripherals within the Vehicle Interface. A push button is
used to program the microcontroller. The button is held down using a pin. After a
certain amount of time a green LED within the Vehicle Interface will light up. This
means that the Vehicle Interface is ready to be programmed using the firmware
for the Ford Focus.

4.2.1.2 OBD-II Port Specifications

The on board diagnostics system (OBD-II) allows someone to gain access to
specific information about the vehicle. The OBD-II port provides power for the
attached vehicle interface modules so that no additional power source is

61

required. The OBD-II system consists of 16 data buses, each providing unique
information on how the vehicle is functioning. The following table contains a list of
pins from the Ford Focus OBD-II port that will be used.

Pin Signal Description

3 LS CAN High Low speed (125Kb) CAN bus

4 CGND Chassis Ground

5 SGND Signal Ground

6 CAN High J-2284

7 K-Line ISO9141-2 and ISO/DIS
14230-4

11 LS CAN Low Low speed (125Kb) CAN
bus.

14 CAN Low J-2284

15 ISO 9141-2 L-Line ISO9141-2 and ISO/DIS
14230-4

16 +12V Battery power

Table 14: Table of pins from the OBD-II port that will be used by the Vehicle
Interface.

The vehicle interface will be plugged into the OBD-II port to access the available
information. Most of the vehicle information is available through CAN1 (pins 6
and 14) which the vehicle interfaces directly plugs into. In addition to the OpenXC
signals that can be obtained from the vehicle (Table 14), the OBD-II also
provides drivers with the following standard information:

● Battery Voltage
● Air Intake Temperature
● Check Engine Light Codes
● Timing Position
● Transmission Temperature

4.2.2 Power

The peripherals of DMS will run off a 9V lithium ion battery. The battery is rated
at 550mAH which is enough to run each device. Since there will be three circuits
that require power separately it will be necessary to purchase three batteries.
The cost of these batteries range anywhere from 5-10$. These batteries are also

62

rechargeable in case they lose charge. Typically the 9V lithium ion batteries are
found in low power consuming devices such as clocks and smoke detectors.
Since all of the components used within the project consume low amounts of
power it is possible to use the 9V lithium ion battery. The devices will also be in
low power modes a majority of the time while the vehicle is in use which will also
lead to an increased battery lifespan. To maintain a constant supply voltage for
the sensors, microcontrollers and Bluetooth module a few LM1117 voltage
regulators will be used. The LM1117 voltage regulator is made by Texas
Instruments. It is a linear voltage regulator that is available in multiple models
with different output voltages. There is also an adjustable version that can set a
regulated output voltage from 1.25V to 13.8V. An Eagle schematic of the LM1117
can be seen below in Figure 24.

Figure 24: Eagle schematic of the LM1117 voltage regulator.

4.2.3 Microcontroller

The MSP430G2553 was chosen as the microcontroller to implement both the
blind spot and collision detection systems. It is a great option for the price Due to
having multiple components with separate microcontrollers the low cost of the
MSP430 was a large deciding factor. The MSP430 is not powerful enough to run
a Bluetooth stack while operating as normal. This will require the addition of a
Bluetooth module. The Bluetooth module can be connected to the MSP430 via a
UART connection provided by the MSP430. An analog to digital converter is also
provided by the MSP430 which can be used to input any analog signals from the
sensors that may be used. It will then convert the analog signal into a digital
signal which can be used as a reference to determine what needs to be done
with the data that has been received. The MSP430 will be powered by a 3.3V
regulated power source. While in an active mode the MPS430 will require 330µA
on average. The MSP430 offers an active mode and four low power modes
which is great for the project. It can be programmed to stand by in any of the four
low power modes until an interrupt signal is received. Although a majority of the
time the vehicle is in use the microcontrollers used will remain in Low Power
Mode 4. While in this low power state the microcontroller only draws about
0.8µA. This is incredibly low and helps to prolong battery life. The following
Figure 25 shows a graph of the MSP430’s current consumption in Low Power
Mode 4.

63

Figure 25: Graph of the supply current while the MSP430 is in Low Power Mode
4. Permission provided by Texas Instruments.

4.2.4 Bluetooth Communication

The wireless communications between the DMS peripherals and the user’s
android device will be done through a Bluetooth connection. The Bluetooth
enabled devices will all be synced to the android device. Each microcontroller will
be kept in low power mode 4 and will not be set active until an interrupt signal is
received. The android device will then be used as the main medium for
communication. When the android device receives the appropriate signal from
the Vehicle Interface, an interrupt signal will be sent to the corresponding
microcontroller. For example when the left turn signal is in use, the left blind spot
detector’s microcontroller will be activated. This way there will be no interference
between multiple Bluetooth channels and will allow the android device to directly
communicate with each component.

The Bluetooth module chosen for the project is the RN-42. The RN-42 is a low
power, class-2 Bluetooth module. It allows for the wireless communication
aspect of the project to be implemented in a cheap and efficient manner. The
RN-42 includes a high performance on chip antenna and comes with everything
needed for the Bluetooth protocol. This is useful because the MSP430
microcontroller would not be able to run a Bluetooth stack. In keeping with the
low power consumption goal of the project, the RN-42 has a sleep mode. This
sleep mode greatly decreases the power consumption of the device while it is not
in use. The RN-42 will allow data to be transferred between the android device
and the microcontroller. Both the blind spot detection circuit and the collision
detection circuit will use the RN-42 for wireless communication. The following

64

table provides specifications of the RN-42 and the following image contains the
RN-42 pinout.

RN-42 Bluetooth Module

Bluetooth Version Class-2 Bluetooth 2.1+ EDR

Frequency Range 2.405-2.48GHz

Supply Voltage 3.0 - 3.6V

Data Rate Slave: 240 Kbps
Master: 300 Kbps

Power Consumption Active: 40mA
Sleep: 26µA

Table 15: Table of the RN-42 Bluetooth Module specifications.

Figure 26: Pinout of the RN-42 Bluetooth module. Permission provided by
Microchip.

The Bluetooth module will run off the same 3.3V regulated power source as the
MSP430. While the device is active it will draw 40 mA and while it is inactive it
will only draw 26µA which will improve the lifespan of the battery being used.
First the Bluetooth module must be made compatible with the MSP430 and the
Android device being used by the driver. To do this the baud rate will be set to
9600 using 8 data bits with 1 stop bit and no parity. A Bluetooth module will be
connected onto both blind spot detectors and the collision detection systems. To
connect the Bluetooth module to the MSP430, pin 14 (UART_TX) of the RN-42
will be connected to pin 3 of the MSP430. This will enable the transmit data line
of the Bluetooth module. Similarly, pin 13 (UART_RX) of the RN-42 will be
connected to pin 4 of the MPS430. This will enable the receive data line of the

65

Bluetooth module. For testing purposes a LED will be used to determine if the
Bluetooth connection has been established. For the final product there will be no
LED on the circuit. The Eagle schematic of the Bluetooth connection can be seen
below in Figure 27.

Figure 27: Eagle schematic of the Bluetooth connection between the RN-42 and
MSP430.

4.2.5 Blind Spot Detection

4.2.5.1 Overview

The blind spot detection systems main goal is to alert drivers when other vehicles
are located on the rear or sides of the vehicle. Blind spots are areas around a
vehicle that cannot be seen by the driver in either the rear view and side view
mirrors. The side-view mirrors can be adjusted to greatly reduce the area of the
blind spot, although this does not eliminate the blind spot entirely. Each year
there are more than 800,000 blind spot related accidents. The use of a blind spot
detection system would greatly reduce the number of related accidents. Different
factors may affect the size of a vehicles blind spot. These factors may include the
size of the driver, the size of the vehicle, and the time of day. Since a blind spot
may change in size between vehicles, the DMS blind spot detection can be
moved around by the driver to fit their needs. The figure below (Figure 28)
depicts the area of a driver’s blind spot.

66

Figure 28: Diagram depicting where blind spots can occur while driving, pending
permission from crimson concrete.

The blind spot detection system will work off the status of the vehicles turn signal.
The blind spot detection system relies on the driver’s Android device to relay
information from the vehicle. When the driver uses their turn signal the android
device will alert the blind spot detection that the driver is possible changing lanes.
If the right turn signal is on, the blind spot sensor on the right of the car will be
activated. The same is done for the left turn signal. When the blind spot sensor is
activated, any motion within the blind spot will be seen by the sensor. If motion is
detected the blind spot system will relay the information back to the driver’s
Android device. The Android device will then alert the driver will a sound alert
and image.

4.2.5.2 Sensor

For the blind spot detection portion of the project, a microwave sensor was
chosen due to the flexibility it offers over the other types of sensors. Microwave
sensors have the ability to sense motion through objects and are not affected by
weather and driving conditions, unlike ultrasonic and PIR sensors. Ultrasonic
sensors were not chosen for this portion of the project because at high speeds
the readings would not be accurate. Wind and noise while the vehicle is in use
affects the detection range of the ultrasonic sensor. If the initial design decision
of using a microwave sensor does not work, PIR sensors will be used as an
alternative. Since the microwave sensor has the ability to detect motion through
walls and certain objects the option is available where it could be placed within
the vehicles trunk or rear bumper. This removes the need for weatherproof
casing that would protect the circuit from harsh environment conditions. Having
the blind spot sensors within the vehicle also keeps the DMS from affecting the
look of the vehicle. If the lithium ion batteries were to fail it is still possible to
power the blind spot detectors. Powering the blind spot detectors can also be

67

done within the vehicle, through the fuse box located in the trunk. Placing the
sensors within the car will be done if the original placement of the sensors on the
vehicle does not work.

The HB100 microwave sensor was chosen as the main sensor for the blind spot
detection system. It is designed by ST electronics, although there is not much
information available on it. The HB100 uses a 10.525GHz RF signal to
determine if an object is moving. The output is very small and requires an
amplifying circuit to boost the signal. Typically the output signal is also very noisy
so a filtering circuit is also required to filter out frequencies that are not wanted. It
was chosen as the sensor for the blind spot detection system due to its low cost.
Typically each sensor falls in the range of $5-10. The transmit frequency and
power is preset by the manufacturer and cannot be adjusted by the user. The
output signal of the HB100 is labeled as the IF signal. This stands for
Intermediate Frequency. The Intermediate Frequency is the combination of the
transmitter frequency and the reflected signal from objects in motion. This allows
for the Doppler Shift value to be determined. The microwave sensor uses the
Doppler Shift output from the IF terminal to determine when there is motion within
the range of the sensor. The HB100 is a low current consuming sensor with a
long detection range. The following table contains specifications of the HB100
microwave sensor module.

Parameter Typical Value

Frequency 10.525 GHz

Settling Time 3 µs

Supply Voltage 5 V

Current Consumption 30 mA

Receive Signal Strength 200 µVpk-pk

Table 16: Specifications of the HB100 microwave sensor module.

4.2.5.3 Amplification Circuit

The HB100 microwave sensor module does not come with an integrated
amplifier. It also provides an output amplitude that is very small which usually lies
in the µV range. This is why an amplification circuit with a very large gain is
required. A very large gain is also required since the sensor will be used in a long
range application, therefore the IF signal will not be very strong. The amplification
circuit consists of two cascaded non-inverting summing amplifiers. Each stage
has a total gain of 100. Total gain is calculated as the product of each stages
gain, therefore this amplifier provides a total voltage gain of 10000. Due to the
gain of this amplifier being so high, the supply voltage noise is visible at the
output. To reduce the amount of noise seen at the output of this amplifier, linear

68

voltage regulators will be used instead of switching regulators. This is because
the noise caused by the switching regulators is much greater than the linear
regulators and may interfere with the output. The high gain of the amplifier will
allow the microcontroller to receive a signal that is large enough to be used. The
schematic of the amplifier can be seen in Figure 29.

Figure 29: Schematic of the amplifier that will be used to boost the microwave
sensor’s output signal.

Although the microwave sensor requires an amplifier with an extremely high gain.
The resistor values of the amplifier cannot exceed 1 MΩ. This is due to input bias
current increasing as the resistor values increase. When the input bias current
becomes too large it will affect the op-amps output voltage. This will lead to
inaccurate readings on the output that is connected to the microcontroller.
LMV772 op amps were chosen to be used within the amplifying circuit. The
LMV772 is a low noise and low offset voltage precision op amp.

4.2.5.4 Overall Blind Spot Circuit

The overall blind spot detection system consists of a HB100 microwave sensor,
MSP430 microcontroller, amplifying stage and an RN-42 Bluetooth module.
Since the blind spot detection system will be looking for motion within a rather
larger area of 10 meters. The microwave sensor requires that its output signal is
amplified. The further a vehicle is from the sensor the smaller the signal will be
from the HB100 microwave sensor. This is why the amplifying stage with a very
large voltage gain of 10000 was used. It is made up of two summing amplifier
stages, each with a voltage gain of 100. This will boost a 100µV signal to 1V
which will allow for the MSP430 microcontroller to interpret the signal. The output
of the amplifying stage is connected to pin 10 of the MSP430. A schematic of the
overall circuit can be seen below in Figure 30A.

69

Figure 30A: Eagle schematic of the overall circuit for the blind spot detection.

4.2.6 Collision Detection

4.2.3.1 Overview

The goal of the collision detection component of the project will be to alert the
driver when the optimal opportunity to begin braking occurs. This portion of the
project will use a sensor located on the front of the car to determine the distance
of objects located in front of the vehicle. The distance between the driver’s
vehicle and the object located directly to the front will then be used to determine
when to begin braking. According to the National Highway Traffic Safety
Administration 28% of accidents are rear-end collision accidents. Being alerted
when to brake in situations where the driver may or may not be paying attention
to the road could lower the number of rear-end collision accidents. By preventing
a potential accident the DMS would be saving the driver money by avoiding
accident costs and preventing possible accident related injuries.

4.2.3.2 Sensor

The collision detection portion of the DMS will use an ultrasonic sensor to
determine the distance between the driver’s vehicle and the vehicle directly in
front of the driver. The ultrasonic sensor was chosen to implement this part of the

70

project due to its ability to accurately determine the distance between itself and
another object. Since the collision detection portion of the DMS is only searching
for vehicles located directly in front of the car the ultrasonic sensor will not have
to be placed at an angle. This reduces the chances that the ultrasonic sensor
may cause false positives. An ultrasonic sensor was chosen over a PIR sensor
for this portion of the project due to needing to be able to measure distance.
Since the ultrasonic sensor uses the traveling of sound waves, it is possible to
determine the distance of an object based on the time it took for the signal to be
transmitted and received. Since the PIR sensor uses a constant infrared beam it
is convenient for motion detection but not as reliable when determining
distances.

The HC-SR04 ultrasonic sensor was chosen as the sensor to implement the
collision detection system. It is a popular ultrasonic sensor device that is
compatible with the MSP430 microcontroller used throughout the project. The
device includes the ultrasonic transmitter and receiver together in one package.
The sensor works by transmitting multiple 40 kHz signals and looks for an echo.
If the targeted object is located directly in front of the sensor, the distance of the
targeted object can be determined by taking the time it took for the transmitted
signal to return and multiplying it by the speed of sound in air. The specifications
for the HC-SR04 ultrasonic sensor module can be found in the following table.

Parameter Typical Value

Working Frequency 40 Hz

Working Distance Max: 4 m
Min: 2 cm

Supply Voltage 5 V

Current Consumption 15 mA

Measuring Angle 15 degrees

Table 17: Table of specifications for the HC SR04 Ultrasonic module.

4.2.3.3 Overall Circuit

The overall design of the collision detection system is similar to the blind spot
detection system. The main difference is caused by the collision detection
system measuring distances while the blind spot detection system monitors
motion. It includes a 9V lithium ion battery, a low power MSP430 microcontroller,
the HC-SR04 ultrasonic sensor for measuring distances and an RN-42 Bluetooth
module for wireless communication between an Android device and the MSP430
microcontroller. The HC-SR04 will be directly connected to the MSP430. Pin 13
of the MSP430 will be connected to the TRIG pin of the ultrasonic sensor and pin
12 of the MSP430 will be connected to the ECHO pin of the ultrasonic sensor. In

71

Figure 30B an Eagle circuit schematic of the overall collision detection system
can be seen below.

Figure 30B: Eagle schematic of the overall circuit for the collision detection.

4.2.7 Rear View Camera

4.2.4.1 Overview

A camera will be positioned at the rear of the car to assist the driver while
backing up. The main goal of this will be to prevent the driver from hitting another
vehicle or striking a pedestrian. Many accidents that take place while backing up
occur in driveways and parking lots, with most involving children. For this reason
the U.S. government has been planning on making rearview cameras mandatory
in newer pedestrian vehicles. Although many options available to consumers are
expensive, the rearview camera portion of the project will be designed to be
affordable.

The rearview camera will be connected to the Android device at the front of the
car. The vehicle interface will then read the gear position of the car to determine
when to display the video to the driver. When the driver puts their car into reverse
the video feed will be displayed to the driver. After the driver backs up and brings
the vehicle into drive the video feed will cut off.

72

Although it is not ideal, for this project the camera will be connected through USB
to the Android device. This will require wiring the vehicle in order to avoid having
exposed wire running from the back of the vehicle to the front of the vehicle. The
camera will be mounted in such a way that it is possible to view a large portion of
the area behind the vehicle that is not normally visible, while insuring that the
driver’s vision is not obstructed. Using a USB device will allow for a reduced cost
due to being able to use a USB connected camera rather than a Wi-Fi enabled
camera. Because the camera will need to be connected with a wire, the rear view
camera will be considered an optional component that the user can disable if
they cannot or do not want to hook up the camera.

The camera that will be used will be under $40 and have decent video quality. It
should work in daylight or at nighttime. It does not have to have the best quality
because the main purpose for it is for the user to make sure they are not about to
run into someone or something behind them, but it should be high quality enough
that the driver is able to identify objects behind their vehicle. An option for the
webcam is the Logitech HD Webcam C270 or Logitech HD Webcam C310. They
are both approximately $30 but may be acquired for as little as $14 depending on
the source and whether or not it is used or refurbished. Logitech Webcams tend
to be Android compatible so it should be able to be connected via USB to the
android device without much issue. The Logitech HD Webcam C270 will be used
over the C310 due to a slightly cheaper price without a diminished quality.

4.2.8 Casing

Both the blind spot and frontal collision detection circuits will be placed outside of
the vehicle. This will add the requirement of needing a case to protect the circuit.
The circuit will be exposed to different types of weather and driving conditions
such as rain, fog, and high winds. The blind spot detection system will be
completely enclosed in a plastic case. This can be done due to the blind spot
detection system using a microwave sensor. Since microwaves can travel
through certain objects it is possible to completely enclose the circuit which will
protect it and still allow it to maintain functionality. The blind spot detection
system will be placed on the rear side panel of the 2013 Ford Focus. To maintain
a stock vehicle appearance it is important that the case is not large enough to
take away from the vehicles appearance. It must also not stand out in a way that
it may take another driver's attention off of the road. To achieve this the case will
have a color to match that of the vehicle being used. In this case the vehicle
being driven is a silver color, therefore we will use a silver casing to cover the
blind spot detection system.

The collision detection circuit differs from the blind spot detection circuit because
of the sensor being used. The sensor used for this circuit is an ultrasonic sensor.
It is not possible to completely encase the ultrasonic sensor, since it relies off
bouncing a signal off of the target. Due to this the casing will have two holes cut

73

out in the front. This will allow the ultrasonic sensors transmitting and receiving
ends to be outside of the case. The sensor will then be able to transmit and
receive a signal. Doing this the circuit is also protected from weather or driving
conditions that may affect it. The circuit will be placed onto the grill of the car.
Since the grill of the car is black, a black casing will be used to enclose the
collision detection system. This will prevent it from taking away from the look of
the car. The rear view camera will be placed near the license plate of the vehicle.
It is positioned in a way that the driver can see as much as possible behind their
car. Since the camera is already encased all that is needed is a thin screen cover
to protect the lens of the camera from any hazardous conditions.

After creating each casing for the circuit, a magnet will be attached to one end.
The magnet will be used to attach the DMS devices throughout the car. Since a
magnet is being used it is possible to move the devices wherever is needed. This
also allows the driver to easily remove these devices when they are not working
or they simply do not want them on their vehicle at the time. This also will prevent
damages to the paint of the car, since using an adhesive type of material could
rip off paint. The dimensions of each case can be seen in table 18 below.

Circuit Dimensions

Blind spot detection casing 2.5 x 2.5 x 0.6 Inches

Frontal collision casing 2.5 x 2.5 x 1 Inches

Table 18: Table of case dimensions.

5.0 Design Summary of Hardware and
Software

5.1 Fuel Efficiency Summary

Fuel efficiency is displayed on an Android device screen while the user is driving
their vehicle. It is represented as a gradient between three different colors,
depending on the settings chosen by the user, allowing for the user to have an
idea of how their driving behaviors are affecting their fuel efficiency. The device
should be placed in such a way that the user will be able to view it from their
peripheral vision, so that they do not need to take their eyes off the road. The
calculations to determine how fuel efficiently the user is driving will take into
acceleration and deceleration. The program also measure how hard the user is
accelerating and braking, whether or not they brake too soon after accelerating, if
they speed over 70mph, and how frequently they idle over 1 minute, to display
this information to the user at a later point in time. All information is gathered
through the vehicle interface and analyzed in the application in real-time. New

74

information is gathered every 50ms in order to insure that the fuel efficiency
display is up-to-date and accurately represents the current driving habits of the
user. However, when the fuel efficiency information is stored and transported to
graphs inside the application, the data will not display per each second. A more
reasonable time frame based on how long the driving session occurred is chosen
and an average of the data gathered within that time frame is shown instead.

5.2 Blind Spot Detection Summary

The blind spot detection system will be made up of two components, one for the
left side and another for the right side of the car. Each circuit will consist of a
microwave sensor, MSP430 microcontroller, a RN-42 Bluetooth module and a
lithium-ion battery. The circuit will be placed in a case that will protect the circuit
from harsh weather conditions and debris from the road. Each component will be
placed onto the rear side panel of the car using a magnet. This will keep the blind
spot detection system from falling off while the vehicle is in motion. A block
diagram of the blind spot detection system can be seen in Figure 31.

Figure 31: Block diagram of the blind spot detection system.

The blind spot detection system will not be activated until the turn signal of the
car has been used. When the driver uses their turn signal, the phone will then
activate the blind spot detection system. The MSP430 will be running in low
power mode, to limit power consumption, until an interrupt signal is sent from the
driver’s phone. While the driver’s turn signal is on, the microwave sensor will
detect any object located in the driver’s blind spot. When the turn signal is turned
off the MSP430 will return to low power mode and the blind spot detection
system will become inactive. This feature can be turned on and off at the drivers
discretion.

5.3 Collision Detection Summary

The collision detection system will be located at the front of the car. It will be
placed at the Ford Focus’ grill. Similar to the blind spot detection system the
collision detection circuit will consist of a MSP430 microcontroller, a RN-42
Bluetooth module, lithium ion battery and an ultrasonic sensor. The block

75

diagram for the collision detection circuit is similar to the one in Figure 31. The
only difference is that an ultrasonic sensor is used for this portion of the project
instead of a microwave sensor. The circuit will also be protected by a case that
can withstand debris from the road and harsh weather conditions. Unlike the
microwave sensor the signal sent from the ultrasonic sensor cannot move
through certain objects. This requires the case to have openings for the
ultrasonic sensors transmitter and receiver. The collision detection system will
alert drivers when they are about to hit another vehicle or an object located in
front of their vehicle. While the vehicle is in use the collision detection system will
be awaken from a sleep mode. When the driver gets too close to the object,
under 1 ft., the distance between them and the object in front of them will be
displayed on the phone. If they continue to move forward they will be alerted
when they are about to strike the object. This feature can also be turned on and
off at the drivers discretion.

5.4 Overall Design Summary

The OpenXC API created by Ford is used to implement the project. With this and
the vehicle interface that was provided to us by Ford, we are able to obtain
vehicle data that is not available to most drivers. With this we are able to build
the DMS. The DMS consists of four main parts. These parts are fuel efficiency
analysis, blind spot detection, collision detection and a rearview camera. An
Android device is used as the center of all the four parts. An application that is
installed on the Android device will communicate with the peripherals attached to
the vehicle. The Android device will be connected to this peripherals using
Bluetooth. The Android device will receive specific vehicle data from the Vehicle
interface that is connected to the OBD-II port of the car. When the turn signal is
being used the Android device will be alerted about the new status of the turn
signal. It will then send an interrupt signal to the respective blind spot sensor (left
or right) to activate it. The blind spot sensor will then relay any information if
movement is picked up within the driver's blind spot. To communicate with the
collision sensor the Android device will wait for information regarding the distance
between the driver's vehicle and the vehicle or object in front. When this distance
becomes too small (under 1ft) the driver will be alerted of their position and how
far away they are from this vehicle. The rear view camera will be connected
directly to the Android device using a USB. When the driver places the car into
reverse video of what's behind the car will be displayed on the Android device.

Along with all of the wireless communication done with each component placed
throughout the vehicle the Android device is also the center for fuel efficiency
calculations. The application on the Android device that will be controlling
communications between all of the devices will also perform these calculations.
There will be two calculations done which include long term and real term
analysis which will help the driver improve their driving behaviors. These
calculations will be done using information that is retrieved from the vehicle
interface such as vehicle acceleration. To allow for all of this to be done on an

76

Android device, the rear view camera, and the collision detection system will
have to wait for an alert from the Android device. This way each component will
not interfere with one another. An overall block diagram of the DMS can be seen
below in Figure 32.

Figure 32: Overall block diagram of the Drive Management System.

6.0 Project Prototype Testing

6.1 Software Testing
In order to determine if the project is working as anticipated, a variety of tests
need to be performed. These test make sure that the blind spot detectors, visual
display for fuel efficiency, graphs, and other aspects of the project meet all of the
specifications and requirements. Testing each functionality occurred throughout
the design process, originally starting with generic data input and progressing as
more features are fully implemented in the vehicle. Prior to completing the
project, all tests described below must meet the expected results. If the expected
results are not met, proper measures must be taken to ensure that they are met.

6.1.1 Blind Spot Detection

The blind spot detection is expected to activate when the steering wheel angle is
in the appropriate range. It will continually monitor to determine if any vehicle
appears in the blind spot, so long as the steering wheel angle remains in the

77

range. A steering wheel angle between -110 and -45 only activates the sensor on
the left side of the vehicle and a steering wheel angle between 45 and 110 only
activates the sensor on the right side of the vehicle. The test cases are shown in
table 19. Before running the test cases in table 19, the Bluetooth communication
between the Android device and each blind spot sensor had to be tested. Since
the blind spot sensor is detecting motion, the communication between the
Android device and the blind spot system can be done without the vehicle. One
of the group members will walk across the sensor in its field of vision. The blind
spot detector will then send the alert to the Android device. This was repeated at
various distances until the max distance of 10 meters is tested. As long as the
blind spot system communicates with the Android device appropriately it has
passed this stage of testing, otherwise it will need to be modified.

Step Procedure/Input Expected Results

1. Left Turn Signal The steering wheel
angle is between -110
and -45

Audio notification will start
which indicates if it is safe to
switch into the left lane, and
a display on the screen will
show a left arrow with a
cross if it’s not okay

2. Right Turn Signal The steering wheel
angle is between 45
and 110

Audio notification will start
which indicates if it is safe to
switch into the right lane, and
a display on the screen will
show a right arrow with a
cross if it’s not okay

3. Default The user returns the
turn signal lever to the
default position

Audio notifications stop and
the display stops showing a
message

Table 19: Blind Spot Detection Test Cases

6.1.2 Collision Detection

Collision detection will be activated if the driver gets too close to an object that is
in front of their vehicle. It will result in an audio notification, unless disabled, and
a notification on the screen. The collision detection will continuously run
throughout the drive so long as the vehicle speed is over 35mph. The test cases
in table 20 show how the application should react to a possible collision. First the
application will determine if a possible collision can occur. This happens when
the driver is too close to an object or vehicle. The driver will be alerted by an
audio notification which is different form the blind spot detector notification will
begin to play to alert the user that they are too close. There will also be a large
image on the screen which shows “TOO CLOSE.” The range for being too close

78

is under 250 inches. The second step is when the driver’s vehicle is too close to
an object in front of it. No audio notification will be played, and no image will be
displayed. This prevents the battery from being wasted simply because the user
is stopped at a stop light. The final step will be while the user is driving a safe
distance from the car in front of theirs. No audio notifications will play and no
image will appear on their device.

Step Procedure/Input Expected Results

1. Possible
Collision in
Motion

The user drives too
close to an object in
front of their vehicle

An audio notification which is different
from the blind spot detector notification
will begin to play to alert the user that
they are too close. A display on the
screen will show TOO CLOSE.

2. Possible
Collision no
Motion

The user is stopped
too close to an object
in front of their
vehicle

No audio notification will play, and
nothing will display on the screen, even
if the user is within the range that was
considered to be too close to other
drivers in other conditions.

3. No
Possible
Collision

The user drives a
safe distance from
any object in front of
their vehicle

No audio notification will play and now
display will appear on their device.

Table 20: Collision Detection Test Cases

6.1.3 Visual Display for Fuel Efficiency

The visual display will be based off a gradient system that reacts to how the
driver is currently performing behind the wheel. The gradient display will change
based on data that is received via the vehicle inferences vehicle management
service. For the gradient, only the vehicle speed is taken into consideration.
However, other factors, such as accelerating, braking, speeding, braking after
accelerating, and idling are taken into account for other fuel efficiency data. This
data is shown to the user in the form of toasts rather than a color gradient, but is
still considered part of the fuel efficiency display. If the driver exhibits bad driving
habits in terms if accelerating and braking too hard, the gradient will change
based on the calculated score from the received vehicle data. The vehicle speed
is calculated into an acceleration and stored in the application’s temporary
memory and the past 10 accelerations are added together using a weighted
average. The weighted average is adjusted to be a score out of 100 for the
gradient to change appropriately, but acceleration is given a stronger weight than
deceleration.The test cases detailed in Table 22A are the generalized expected
inputs during normal operation.

79

Step Procedure/Input Expected Results

1. Starting The user starts
the driving
session and starts
the engine

The program starts calculating the
user’s score and adjusts the color
display accordingly. It continually stores
the data gathered into a file. The display
remains on and does not allow the
phone display to dim due to inactivity.

2. Starting Fails The user starts
the driving
session but the
Android device
does not detect
OpenXC data

The program shows a blank screen
which allows them to see that the
OpenXC has failed.

3. Acceleration The user
acceleratesand
score is less than
50

The further the user pushes on the
accelerator, the more their score drops,
and the display changes colors to reflect
this action. Also a point is added to
acceleration score every 30 seconds.

4. Braking The user brakes
and the score is
less than 50

The user’s score drops and the display
changes colors to reflect this action.
Also a point is added to braking score
every 30 seconds.

5. Idling The user idles for
longer than 1
minute

A message is displayed showing that
the user has been idling for longer than
1 minute and a point is added to the
idling score.

6. Speeding The user drives at
a speed faster
than 70 mph

A point is added to the speeding score
every 30 seconds that the vehicle speed
is over 70 mph

7. Braking after
Accelerating

The user presses
the brake pedal
after pressing the
accelerator past
20% within 10
seconds

A point is added to the brake after
accelerating score if the brake pedal is
pressed within 10 seconds of the
accelerator being pressed past 20%

8. Messages Speed = 0 Messages displayed on screen.

Table 22A: Visual Display Test Cases

80

Once all of the testing criteria in table 22A have been met, the values of the
score were tested and adjusted to provide drivers with accurate data. This part of
the application required balancing points earned and lost by different driving
behaviors. The effect of the total score on the gradient displayed on the Android
device was also be tested. The gradient was adjusted to not change too quickly
so that the driver can notice their current fuel efficiency. The gradient displayed
must did not change too slow as that would no longer be a reflection on the real
time calculations.

6.1.4User Interface

The user interface for the program allows the user to choose different options
which bring up different displays. The different displays will either allow the user
to view new information or allow the user to make changes to the program. The
steps to test that this is working as anticipated are shown in table 22B.

Step Procedure/Input Expected Results

1. Start
Driving
Session

The user presses on
the Start Driving
Session button

The screen changes to the Visual
Display for Fuel Efficiency

2. Last Driving
Session

The user presses on
the Last Driving
Session button

The screen changes to show a graph
of the most recent driving session

3. Driving
History

The user presses on
the Driving History
button

The screen changes to show new
buttons to see past driving sessions or
an overview

4. Your Fuel
Economy

The user presses on
the Your Fuel
Economy button

The screen changes to a display
showing tips that are geared toward
frequent mistakes the user has made
while driving

5. Options The user presses on
the Options button

The screen changes to show the
options: audio toggle, rear view
camera toggle, change colors, test
colors, and erase data

6. Credits The user presses on
the Credits button

The screen changes to show the
credits for the application

7. Default The user presses
the Back button

The screen returns back to the main
menu

Table 22B: User Interface Test Cases

81

6.1.4.1 Driving History

If the user wants to view their driving history, there are a few options to choose
from. These options were tested as shown in table 23. For the first option, there
is actually more than one button available to be pressed. For example, there
areten different “past driving session” buttons where each stores a different data
set, in order for the user to be able to view specific past driving histories. The
oldest is number 10 and the newest is number 1. Once the limited amount of
data is stored, the older files will be overwritten with new data.

Step Procedure/Input Expected Results

1. Past
Driving
Session

The user presses on
one of the available
Past Driving Session
buttons

The screen changes to show a
graph of the indicated past driving
session

2. Overview The user presses
Overview button

The screen changes to show a
graph of an overview of all driving
sessions in memory

Table 23: Driving History Test Cases

6.1.4.2 Options

The options menu has different choices that can be made to alter how the
program functions. This includes audio functionalities, color themes, and erase
data buttons. All of the possible test cases to determine that the options menu
works properly are shown in table 24.

Step Procedure/Input Expected Results

1. Audio
Toggle

The user presses
the Audio button

If the audio is not muted: Mutes the
audio that plays while driving.

If the audio is muted: Unmutes the
audio that plays while driving

2. Color Choice The user presses
a color theme

The colors in the application change to
reflect the chosen color option

3. Erase data The user presses
one of the erase
data buttons

Erase all charts: Erases all data stored
on the charts in the application.

Erase long term data: Erases all long
term data

Table 24: Options Test Cases

82

6.1.4.2.1 Change Colors

There are four color options to which the user can choose to switch the color
theme. Each color in the theme is mapped to specific parts of the base program
so there will be no layout difference depending on the colors. The only change
that is made is the actual color change. The test cases to determine that these
work properly are shown in table 25.

Step Procedure/Input Expected Results

1. Normal (Green /
Yellow / Red)

The user presses the
button for Normal color
vision

The color theme of all
aspects of the program
changes to black, white,
green, yellow, and red
display

2. Monochromacy
(White / Gray /
Black)

The user presses the
button for Monochromacy
color vision

The color theme of all
aspects of the program
changes to a black, white,
and gray display

3. Deuteranopia &
Protanopia (Blue /
White / Red)

The user presses the
button for Deuteranopia &
Protanopia color vision

The color theme of all
aspects of the program
changes to a black, blue,
white, and red display

4. Tritanopia
(Green / White /
Red)

The user presses the
button for Tritanopia color
vision

The color theme of all
aspects of the program
changes to a black, green,
white, and red display

5. Default The user presses the Back
button

The screen returns to the
Options menu display

Table 25: Changing Colors Test Cases

6.2 Safety

Technological advances in vehicles bring with them inherent distractions that
could possibly cause issues with safety. Extensive research has been done by
National Highway Traffic Safety Administration on how distracting technology can
be while still remaining relatively safe for the driver. DMSadheres to the research
done, trying to minimize distraction to the driver. All features implemented in this
project must be done so in a way that is completely safe, providing no extra
hazard that could result in a dangerous situation for the driver. Testing was done
to ensure that placement of all new objects as well as audio are not distracting or
disrupt concentration. The following list details the requirements to ensure that
the project is safe.

83

● The phone must be mounted in a position that does not block vision or get
in the way of the driver’s hands.

● The phone must be securely mounted so that it will not fall off of the mount
while the user is driving, even in the event of a sudden stop or sudden
acceleration.

● The phone mount must be securely attached to the vehicle so that it will
not detach from the vehicle even in the event of a sudden stop or sudden
acceleration.

● The rear view camera must not block the driver’s ability to see through the
rear view mirror.

● The rear view camera must not activate at any point that the user is not in
reverse, so as to not provide a distraction to the driver.

● The blind spot detection must accurately detect if there is someone in the
blind spot. Not detecting another vehicle being in the blind spot could
result in serious harm.

● The blind spot detection must activate for the correct side of the vehicle.
● The audio notifications must begin as soon as possible after the turn

signal is activated.
● The audio notifications must clearly identify whether or not it is safe to

switch lanes.
● The audio notifications must not be surprising, shocking, obnoxiously loud,

or imitate emergency vehicle noises.
● All audio notifications must have a visual counterpart to accommodate

users who are deaf.
● The visual display must not be distracting.
● It should take under 2.0 seconds for the driver to look away from the road

and at the screen, however it is preferable for the user to be able to see
the screen without needing to look away at all. [17]

● The visual display must not rapidly change to different colors in a way that
could trigger someone with epilepsy.

6.3 Simulations

To ensure that the fuel economy monitoring portion of the DMS is working as
intended, and also for presentation purposes simulations will be created to show
how the application reacts to different situations. There will be several different
simulations; The first simulation will demo how the application responds to a
driver who is driving with poor fuel economy in the city, the second simulation will
demo a driver who is driving with good fuel economy in the city, the third
simulation will demo a typical trip on the highway, and the fourth simulation will
demonstrate how the application responds to driving with excessive acceleration
and lane changes. The simulations will be created using trace files that represent
pre-recorded data points. The data points will be generated by taking short drives
in the vehicle with the VI set up to record trace data points to a file so that we
have the desired data for each simulation. A data point consists of a signal tag, a
value, and a timestamp. The following are some sample data points.

84

● {"name":"accelerator_pedal_position","value":0,"timestamp":1361454211.4

83000}
● {"name":"torque_at_transmission","value":1,"timestamp":1361454211.488

000}
● {"name":"steering_wheel_angle","value":-

46.7,"timestamp":1361454211.521000}
● {"name":"fuel_consumed_since_restart","value":0.326952,"timestamp":136

14542

The first simulation that represents a driver who is driving poorly, will showcase
how the algorithm for changing screen color represents the driver’s choices
behind the wheel. The simulation will accomplish this by choosing trace data
points that represent over acceleration, poor fuel consumption, and excessive
braking, and fast lane changing. This simulation should be programmed so that
the color gradient change on the screen and the pop up toast suggestions are
activated.

The second simulation will showcase how the application responds to a driver
who is driving well according to the rules that DMS follows for driving efficiently.
This means recording vehicle data for when the car is operating in ranges we
have calculated to be an acceptable driving score. In this simulation the gradient
should stay within the green and yellow range and never enter the orange and
red ranges. There can still be toast suggestions but they should not be related to
things such as acceleration and excessive braking. Toasts for this simulation
could include things like excessive lane changing or idling.

The third simulation will be designed to demo how the application will function on
the highway. The highway is a special case because fuel consumption tends to
be more efficient on the highway because of the constant speed and generally
very little acceleration. The special case to consider for the highway is excessive
speeds. The variable that will affect the highway driving the most is if the vehicle
reaches speeds over 70 miles per hour. For this simulation the vehicle will be at
a constant speed of 60 miles per hour and then will periodically accelerate to and
maintain speeds over 70 miles per hour, then decelerate back to 60 miles per
hour.

The fourth simulation is designed to show the reactiveness of the DMS to
“aggressive” driving. For this simulation data will be recorded while the vehicle
accelerates excessively, breaks excessively and rapidly changes lanes. This
simulation is intended to show how the DMS will make suggestions to help the
driver improve on their driving and fuel economy, and also how fast the gradient
reacts to changing vehicle conditions in rapid succession. This simulation differs
from the first simulation in that it is not intended to show common driving
mistakes and is intended only to showcase the most extreme of driving behavior.

85

6.4 Road Testing

The road tests were conducted during the final stages of testing of the design.
Testing done while the vehicle is in use was the most important stage of testing.
This determined the overall functionality of the project. Each component of the
project was tested in different types of weather conditions. The DMS also was
tested during night time to verify that it not only works during night, but is also not
a distraction to the driver during the night. Since the DMS requires that one
person is driving, at least two people must be present during this stage of the
testing phase. This is used as a safety measure to allow the person driving to
focus their attention on the road, while another person can monitor the activity of
the DMS and verify that the project works correctly. The driver also can notify
how easy it is to tell their driving habits without taking their eyes off the road.

Most importantly all of the components to the DMS must be attached or placed
onto the vehicle securely. Different types of driving conditions that the DMS must
survive through include highway driving at higher speeds, heavy traffic, and
normal city traffic. They must not fall off while the vehicle is in use. If any
component of the DMS were to fall off the vehicle while in use, the DMS would
not be able to function properly. This would increase the cost of the project due
to having to replace a component(s). It is important that the method of attaching
the components to the car does not cause any scratches or dents to the vehicle.
The placement of these components must not interfere with the driver's view of
the road or attention. They must also not interfere with other drivers. Each sensor
must be placed within a case that can withstand different types of weather
conditions and driving conditions. The following lists contain testing requirements
of the project which are specific to each component.

Fuel Efficiency

● Messages must be sent to the driver while the car is not in motion as to
what they can do to achieve better fuel efficiency levels.

● Must test multiple driving behaviors to verify that all possible scenarios are
met.

● Real time analysis on fuel economy must be displayed in a non-distracting
way.

● Long term data on driving behaviors and fuel economy must be saved
correctly and easy to access for the driver. The information must be
displayed in a manner which is easy to read.

Blind Spot Detection

● Must be active while the vehicles turn signal is on.
● Objects located within the blind spot must be detected regardless of size.
● The driver should receive an alert as to when the blind spot detection

system has sensed an object.
● While the vehicles turn signal is off no alerts should be sent to the android

device.

86

Collision Detection

● Able to detect objects very close to the front of the car.
● Test that the driver is alerted of an object which they could potentially

drive into.

Rear-view camera

● While pulling out of a parking spot in reverse the driver must be presented
with a clear video.

● While backing into a parking spot the driver will be provided with a clear
video feed so that they may park correctly.

6.4.1 Fuel Efficiency road testing

To accurately test that the fuel efficiency monitoring portion of the project is
working properly, multiple test drives were required. The vehicle must first be
driven with different driving behaviors. Initially the vehicle is driven using a
reckless driving behavior where the driver is accelerating quickly and changing
lanes often. This style of driving will be used to make sure that the DMS is taking
the correct information from the car and using it to see how the driver is driving.
The driver should then receive a low score for their fuel efficiency. While the
driver is at a stop, the android devicedisplays information as to what they are
doing wrong. This information includes accelerating too fast and braking too hard,
as well as other factors mentioned in previous sections. Another style of driving
that will be used is a safer style of driving where the driver accelerates smoothly,
allows time to come to complete stop, and does not change lanes too often.
When the DMS sees this style of behavior the driver will be prompted with
messages that praise them on their good driving behavior. The fuel efficiency
score may rise due to their more fuel friendly driving style.

After testing driving behaviors, a long distance drive was required to verify that
the long term fuel consumption data is being stored correctly. This drive should
have been approximately 20 miles in distance or last about an hour in duration.
During the drive the driver changed their speed and driving behaviors from a less
fuel efficient style to a much more efficient style. The passengers within the car
then verified that the real time fuel efficiency data has changed in a similar
manner to the driver’s behavior. After the drive the long term fuel economy data
that is stored will be observed. This is to verify that the data stored is accurate.
The Ford Focus then needed to be taken out on other small trips throughout the
week to make sure that the fuel economy data for the week was also being
stored accurately.

87

6.4.2 Blind Spot Detection road testing

When testing the blind spot detection system, another car was used to act as a
test object within the driver's blind spot. This prevents the chance of an accident
if the test was to be done with unsuspecting cars on the road. The driver
behaved normally and changed lanes as usual. The test carthen approached the
driver and pull into the driver's blind spot. The driver will then prepare to turn
using the steering wheel angle in the direction of the test vehicle. The blind spot
detection system then sensed the test car and communicated with the android
device to alert the driver that there is an object within their blind spot. A further
step into testing the blind spot detection system isto see that when the driver
uses turns their steering wheel before a car enters the blind spot, that the sensor
will detect the car when it enters the blind spot. This was done by first having the
driver user turn their steering wheel in the proper direction. The test car then
drove into the blind spot of the driver to be detected. The last portion of the blind
spot testsincluded testing the system when the steering wheel is turnedwhile
there are no objects within the blind spot. This was used to make sure that the
blind spot detection system does not set any false positives.

6.4.3 Collision Detection road testing

The collision detection system was tested in two different ways. It is used when
approaching another car on the street. When approaching a stopped vehicle the
driver allowed the vehicle to coast slowly towards the vehicle in the front. When
there is less than a foot of space between the front of the driver’s vehicle and the
vehicle to the front the driver must be alerted through their android device. The
collision detection also was tested while parking. The Ford Focus was taken to a
UCF parking garage where the driver attempted to park the vehicle. As the front
of the vehicle approaches the wall in front the collision sensor communicated
with the android device to alert the driver when they are close enough.

7.0 Administrative Content

7.1 Budget and Finance

The project is not sponsored and will be funded by the group members. Since all
the funding will be provided by the group members, keeping the overall cost of
the project low is very important. The total cost was lowered by group members
already owning required products and the donation of an OBD-II reader by Ford.
Additional donations, sponsorships, or assistance are being sought after to lower
the total cost of the project. The group is prepared to fund the project out of
pocket if no additional assistance can be found. The expected expenses and

88

used parts are shown in table 26. The cheapest parts that met the specifications
of the DMS were chosen to implement the project.

Part Manufacturer Qty
.

Unit
Price

Net Price

2013 Ford Focus Ford 1 $16,500.0
(Donated)

$0.00

MSP430g2553
microcontroller

Texas
Instruments

3 $2.25 $6.75

Maxbotix LV-EZ2 Cytron
Technologies

1 $29.99 $29.99

HB100 Microwave Sensor ST Electronics 2 $10.00 $20.00

Samsung Galaxy S4
(Android Device)

Samsung 1 $584.29
(Donated)

$0.00

RN-42 Bluetooth Module Roving
Networks

2 $15.95 $31.90

Lithium Ion Battery Energizer 3 $7.20 $21.60

PCB (4 square inch) 4PCB 3 $33.00 $99.00

HC-06 Bluetooth Module SMAKN 3 $10.00 $30.00

OBD-II Reader Ford 1 $100.00
(Donated)

$0.00

Vehicle Phone Mount 1 $5.99 $5.99

Estimated Total:
$245.23

Table 26: Table of finances for the DMS.

7.2 Milestone Chart and Discussion

The following tables provide descriptions of milestones for Senior Design 1 and
Senior Design 2. Although each member has specific responsibilities, it is the
group’s responsibility to meet each deadline as close as possible. The time for
development in Senior Design 2 is small, which means fast prototyping is
required. The shorter deadlines allow room for any miscalculations to be fixed
before the project is due. This will prevent the group from not being able to finish
on time or overlooking a major flaw that may not be noticed before presenting the
project.

Date Task

11/7/2013 Draft document finalized and turned in.

11/11/2013 Software design concept completed.

89

11/20/2013 Hardware design concept completed.

12/2/2013 Senior Design 1 final paper turned in.

12/9/2013 Order parts for prototyping.

12/17/2013 Connect vehicle interface with Ford Focus.

Table 27: Table of milestones for Senior Design 1.

Date Task

1/5/2014 Begin prototyping of blind spot detector.

1/20/2014 Finish prototype of blind spot detector.

1/21/2014 Begin Android app development.

2/15/2014 Begin front collision detection prototyping.

2/21/2014 Finish Android app development.

2/28/2014 Finish prototyping of front collision detector.

3/01/2014 Begin testing stages of DMS.

3/24/2014 Finish testing of the DMS.

4/14/2014 Final Documentation

Table 28: Table of milestones for Senior Design 2.

7.3 Work Distribution

Each group member was responsible for different portions of this report.
Although different aspects were agreed upon by all members, one member was
to come up with design choices for each member to look over. The
responsibilities of each group member are detailed below in table 29. As the
Computer Engineers of the group Aaron and Sarah are focusing on designing the
application for the DMS and the fuel efficiency algorithms that will go along with
it. Since the Android device is the centerpiece of the project, it is important that
the application running on the Android device is programmed correctly. The fuel
efficiency part of the project also requires a lot of design as many variables affect
this. As the Electrical Engineer of the group Victor will be responsible for the
circuit design of the components that will be used with the DMS. Although each
group member has specific tasks assigned to them, it is important that they
review the work done by each of their peers. As this is a team effort it is
important that the group cooperates throughout all stages of the project. If a

90

group member runs into problems while designing and prototyping the DMS it is
necessary that they look for help from other group members or faculty members
at UCF. The responsibilities of each group member were decided on based on
their knowledge and experiences.The writing of the paper has been split up
evenly with a minimum of 30 pages per group member. The following
tabledepicts what each group member has been assigned.

 Wireless
Comm.

Power Hardware Android App

Aaron Kost X X X X

Sarah Bokunic X

Victor Medina X X X X

Table 29: Table of the project work distribution in the group.

8.0 Project Operation

Driving Management System was intended to be a cheaper alternative to current
market products for fuel efficiency monitoring as well as blind spot and collision
detection sensors. It does however have some instructions for operation for the
user.

8.1Hardware Peripherals

To correctly operate the Driving Management System the sensors must be
turned on in a certain order so that the wireless network correctly initializes. First,
the right blind spot sensor must be turned on followed by the left blind spot
sensor. This allows the blind spot system to correctly initialize. After starting the
blind spot system, turn on the collision avoidance at the front of the car. This
allows the blind spot system to connect to the collision avoidance. Once the
entire system is powered, the hardware will wait for the Android device to
connect. To correctly use the Driving Management System, place the two blind
spot detectors within the vehicles trunk on each side. Then place the collision
avoidance at the front of the car, in the license plate area. Placement of the
sensors can be seen in figure 33 below.

91

Figure 33: Placement of the hardware peripherals throughout the car.

8.2Android Application

1. On the main screen, as shown in Figure 34, to start the driving session, the
user presses the Start Driving Session button.
2. To view the most recent driving session, the user presses the Last Driving
Session button.
3. To view up to 10 previous driving sessions as well as an overview of all driving
sessions, the user presses the Driving History button.
4. To view an overview of the user’s fuel economy information gathered from the
application, the user presses the Your Fuel Economy button, as shown in Figure
33.
5. To view options to customize the application or to erase data, the user presses
the Options button.
6. To view the credits on the application, the user presses the Credits button.

Figure 34: Screenshots from application

92

Appendices

Appendix A - Permissions

Figure 35: Texas instruments permissions.

Figure 36: Microchip permissions.

Appendix B - References

1. “Gas Mileage Tips - Driving More Efficiently.” fueleconomy. n.p., n.d.
Web. 5 Nov. 2013. <http://www.fueleconomy.gov/feg/driveHabits.shtml>

2. Ford. 2013 Focus Owners Guide. Web. 15 Nov. 2013.
<http://www.fordservicecontent.com/Ford_Content/catalog/owner_guides/
13focom1e.pdf>

3. “Fuel-efficient Driving.” eartheasy. n.p, n.d. Web. 5 Nov. 2013.
<http://eartheasy.com/move_fuel_efficient_driving.html>

4. “9 Easy Ways To Increase Your Gas Mileage.” Investopedia. Jean Folger,
21 Feb. 2013. Web. 14 Nov. 2013.
<http://www.investopedia.com/financial-edge/0211/9-easy-ways-to-
increase-your-gas-mileage.aspx>

5. “2013 Ford Focus S Sedan.” Ford. n.p, n.d. Web. 3 Nov. 2013.
<http://www.ford.com/cars/focus/2013/trim/ssedan/>

6. Atmel Corporation. 8-bit AVR Microcontroller with 4/8/16/32K Bytes In-
System Programmable Flash. Web. 12 Nov. 2013.
<http://www.atmel.com/Images/doc8161.pdf>

7. Texas Instruments Incorporated. 2.4-GHz Bluetooth low energy and
Proprietary System-on-Chip. Web. 14 Nov. 2013.
<http://www.ti.com/lit/ds/swrs110d/swrs110d.pdf>

http://www.fueleconomy.gov/feg/driveHabits.shtml
http://www.fordservicecontent.com/Ford_Content/catalog/owner_guides/13focom1e.pdf
http://www.fordservicecontent.com/Ford_Content/catalog/owner_guides/13focom1e.pdf
http://www.fordservicecontent.com/Ford_Content/catalog/owner_guides/13focom1e.pdf
http://eartheasy.com/move_fuel_efficient_driving.html
http://www.investopedia.com/financial-edge/0211/9-easy-ways-to-increase-your-gas-mileage.aspx
http://www.investopedia.com/financial-edge/0211/9-easy-ways-to-increase-your-gas-mileage.aspx
http://www.ford.com/cars/focus/2013/trim/ssedan/
http://www.atmel.com/Images/doc8161.pdf
http://www.ti.com/lit/ds/swrs110d/swrs110d.pdf

93

8. Android Developers. Android. Web. 16 Nov. 2013.
<http://developer.android.com/>

9. “OpenXC Message Format Specification.” openxc. Ford Motor Company,
2012-2013. Web. 1 Nov. 2013. <https://github.com/openxc/openxc-
message-format>

10. “GraphView Library.” jjoe64 developer blog. Jonas Gehring, 2011. Web.
15 Nov. 2013. <http://www.jjoe64.com/p/graphview-library.html>

11. “What is Color-Blindness.” Color Matters. J.L. Morton, n.d. Web. 15 Nov.
2013. <http://www.colormatters.com/color-and-vision/what-is-color-
blindness>

12. “Doppler Effect.” Wolfram Research. Eric W. Weisstein, n.d. Web. 3 Nov.
2013. <http://scienceworld.wolfram.com/physics/DopplerEffect.html>

13. Tanenbaum, A. S., and D. J. Wetherall. Computer networks. Prentice Hall,
2010. Print.

14. “Understanding the Linear Regulators.” DigiKey. Steven Keeping, 8 May
2012. Web. 10 Nov. 2013.
<http://www.digikey.com/us/en/techzone/power/resources/articles/underst
anding-the-linear-regulators.html>

15. “Logitech HD Webcam C270.” Logitech. Logitech, 2013. Web. 23 Nov.
2013. <http://www.logitech.com/en-us/product/hd-webcam-c270?crid=34>

16. “Logitech Broadcaster Wi-Fi Webcam.” Logitech. Logitech, 2013. Web. 23
Nov. 2013. <http://www.logitech.com/en-us/product/broadcaster-wifi-
webcam?crid=34>

17. National Highway Traffic Safety Administration. Visual-Manual NHTSA
Driver Distraction Guidelines for In-Vehicle Electronic Devices. Web. 26
Nov. 2013.
<http://www.nhtsa.gov/staticfiles/rulemaking/pdf/Distraction_NPFG-
02162012.pdf>

Appendix C - Table of Tables

Table of Tables
Table 1: Table of MSP430G2553 specifications ... 13

Table 2: Table of ATmega328P specifications ... 14

Table 3: Table of CC2541 specifications .. 15

Table 4: Table of Some OpenXC Signal Names .. 18

Table 5: Classes that will be used for the project ... 21

Table 6: Sharedpreferences methods that will be used 22

Table 7A: Internal storage methods that may be used 23

Table 7B: Android input control buttons .. 27

Table 8: Table of method callbacks for event listeners 28

Table 9: Required XML Preference Attributes .. 30

http://developer.android.com/tools/
https://github.com/openxc/openxc-message-format
https://github.com/openxc/openxc-message-format
http://www.jjoe64.com/p/graphview-library.html
http://www.colormatters.com/color-and-vision/what-is-color-blindness
http://www.colormatters.com/color-and-vision/what-is-color-blindness
http://scienceworld.wolfram.com/physics/DopplerEffect.html
http://www.digikey.com/us/en/techzone/power/resources/articles/understanding-the-linear-regulators.html
http://www.digikey.com/us/en/techzone/power/resources/articles/understanding-the-linear-regulators.html
http://www.digikey.com/us/en/techzone/power/resources/articles/understanding-the-linear-regulators.html
http://www.logitech.com/en-us/product/hd-webcam-c270?crid=34
http://www.logitech.com/en-us/product/broadcaster-wifi-webcam?crid=34
http://www.logitech.com/en-us/product/broadcaster-wifi-webcam?crid=34
http://www.nhtsa.gov/staticfiles/rulemaking/pdf/Distraction_NPFG-02162012.pdf
http://www.nhtsa.gov/staticfiles/rulemaking/pdf/Distraction_NPFG-02162012.pdf
http://www.nhtsa.gov/staticfiles/rulemaking/pdf/Distraction_NPFG-02162012.pdf
http://www.nhtsa.gov/staticfiles/rulemaking/pdf/Distraction_NPFG-02162012.pdf

94

Table 10: Table of Bluetooth low energy technical specifications 37

Table 11: Table of OpenXC Signal Names that will be used 44

Table 12: Driving Habit and Associated Vehicle Attributes 57

Table 13: Driving Habit Suggestions .. 58

Table 14: OBD II pins ... 61

Table 15: RN-42 Bluetooth Module specifications .. 64

Table 16: HB100 microwave sensor module specifications 67

Table 17: HC SR04 Ultrasonic module specifications .. 70

Table 18: Case dimensions .. 73

Table 19: Blind Spot Detection Test Cases .. 77

Table 20: Collision Detection Test Cases ... 78

Table 21: Rear View Camera Test Cases .. 78

Table 22A: Visual Display Test Cases .. 79

Table 22B: User Interface Test Cases .. 80

Table 23: Driving History Test Cases ... 81

Table 24: Options Test Cases .. 81

Table 25: Changing Colors Test Cases .. 82

Table 26: Table of finances for the DMS .. 88

Table 27: Senior design 1 milestones ... 89

Table 28: Senior design 2 milestones ... 89

Table 29: Project Work Distribution .. 90

Appendix D - Table of Figures

Table of Figures
Figure 1: Pin layout of the MSP430G2553 ... 14

Figure 2: Pin layout of the CC2541 ... 15

Figure 3: Communication between USB camera and device 21

Figure 4: View Hierarchy for an Android Application .. 24

Figure 5: Linear Layout example .. 25

Figure 6: Relative Layout Example ... 26

Figure 7: Process of rendering a button in layout with click listener attached 29

Figure 8: Position change for toast ... 31

Figure 9: Using XML layout file to create custom toast.……………………… 31

95

Figure 10: Styles and Themes example ... 32

Figure 11: Equation for ultrasonic distance .. 34

Figure 12: Visual representation of how an ultrasonic sensor works 35

Figure 13: Formula for calculating Doppler Effect ... 36

Figure 14: General schematic of a linear voltage regulator 39

Figure 15: View Hierarchy of DMS Android Application 42

Figure 16: DMS UML Class Diagram ... 43

Figure (F1): Start your engines! .. 46

Figure (F2): Calculating acceleration score .. 46

Figure (F3): Calculating brake score .. 47

Figure (F4): Calculating speed score .. 47

Figure (F5): Calculating idle score .. 48

Figure (F6): Calculating total score and finishing process 48

Figure 17: Example Layout for the Main Screen1 ... 51

Figure 18: Algorithm for deciding color ... 52

Figure 19: Demo graph made using GraphView and color algorithm 53

Figure 20: Different color options different types of color vision 54

Figure 21: DMS custom layout toasts ... 57

Figure 22: Process for updating Driving Habit List.. 59

Figure 23: Vehicle interface module that was provided by Ford 60

Figure 24: Eagle schematic of the LM1117 voltage regulator 62

Figure 25: Low Power Mode 4 supply current .. 63

Figure 26: Pinout of the RN-42 Bluetooth module .. 64

Figure 27: Schematic of the connection between the RN-42 and MSP430 65

Figure 28: Blind spot location ... 66

Figure 29: Amplifier schematic ... 68

Figure 30A: Overall blind spot detection circuit... 69

Figure 30B: Overall collision detection circuit ... 71

Figure 31: Block diagram of the blind spot detection system 74

Figure 32: Overall block diagram of the Drive Management System 76

Figure 33: Hardware Peripheral placement .. 91

Figure 34: Android Software Layout .. 91

Figure 35: Texas instruments permissions ... 92

Figure 36: Microchip permissions .. 92

96

